Lesion-aware Dynamic Kernel for Polyp Segmentation
- URL: http://arxiv.org/abs/2301.04904v1
- Date: Thu, 12 Jan 2023 09:53:57 GMT
- Title: Lesion-aware Dynamic Kernel for Polyp Segmentation
- Authors: Ruifei Zhang, Peiwen Lai, Xiang Wan, De-Jun Fan, Feng Gao, Xiao-Jian
Wu and Guanbin Li
- Abstract summary: We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
- Score: 49.63274623103663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic and accurate polyp segmentation plays an essential role in early
colorectal cancer diagnosis. However, it has always been a challenging task due
to 1) the diverse shape, size, brightness and other appearance characteristics
of polyps, 2) the tiny contrast between concealed polyps and their surrounding
regions. To address these problems, we propose a lesion-aware dynamic network
(LDNet) for polyp segmentation, which is a traditional u-shape encoder-decoder
structure incorporated with a dynamic kernel generation and updating scheme.
Specifically, the designed segmentation head is conditioned on the global
context features of the input image and iteratively updated by the extracted
lesion features according to polyp segmentation predictions. This simple but
effective scheme endows our model with powerful segmentation performance and
generalization capability. Besides, we utilize the extracted lesion
representation to enhance the feature contrast between the polyp and background
regions by a tailored lesion-aware cross-attention module (LCA), and design an
efficient self-attention module (ESA) to capture long-range context relations,
further improving the segmentation accuracy. Extensive experiments on four
public polyp benchmarks and our collected large-scale polyp dataset demonstrate
the superior performance of our method compared with other state-of-the-art
approaches. The source code is available at https://github.com/ReaFly/LDNet.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling [5.453850739960517]
We propose a novel model named Edge-Prioritized Polyp (EPPS)
Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps.
We also introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model.
arXiv Detail & Related papers (2024-05-20T07:41:04Z) - Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation [11.646574658785362]
This work presents a new novel architecture namely Adaptation of Distinct Semantics for Uncertain Areas in Polyp (ADSNet)
ADSNet modifies misclassified details and recovers weak features having the ability to vanish and not be detected at the final stage.
experimental results demonstrate the great correction and recovery ability leading to better segmentation performance compared to the other state of the art in the polyp image segmentation task.
arXiv Detail & Related papers (2024-05-13T07:41:28Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
In this study, we present a novel Edge-aware Feature Aggregation Network (EFA-Net) for polyp segmentation.
EFA-Net can fully make use of cross-level and multi-scale features to enhance the performance of polyp segmentation.
Experimental results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and effectiveness.
arXiv Detail & Related papers (2023-09-19T11:09:38Z) - FLDNet: A Foreground-Aware Network for Polyp Segmentation Leveraging
Long-Distance Dependencies [1.7623838912231695]
We propose FLDNet, a Transformer-based neural network that captures long-distance dependencies for accurate polyp segmentation.
Our proposed method, FLDNet, was evaluated using seven metrics on common datasets and demonstrated superiority over state-of-the-art methods on widely-used evaluation measures.
arXiv Detail & Related papers (2023-09-12T06:32:42Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.