Exploring the Privacy Protection Capabilities of Chinese Large Language Models
- URL: http://arxiv.org/abs/2403.18205v1
- Date: Wed, 27 Mar 2024 02:31:54 GMT
- Title: Exploring the Privacy Protection Capabilities of Chinese Large Language Models
- Authors: Yuqi Yang, Xiaowen Huang, Jitao Sang,
- Abstract summary: We have devised a three-tiered progressive framework for evaluating privacy in language systems.
Our primary objective is to comprehensively evaluate the sensitivity of large language models to private information.
Our observations indicate that existing Chinese large language models universally show privacy protection shortcomings.
- Score: 19.12726985060863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), renowned for their impressive capabilities in various tasks, have significantly advanced artificial intelligence. Yet, these advancements have raised growing concerns about privacy and security implications. To address these issues and explain the risks inherent in these models, we have devised a three-tiered progressive framework tailored for evaluating privacy in language systems. This framework consists of progressively complex and in-depth privacy test tasks at each tier. Our primary objective is to comprehensively evaluate the sensitivity of large language models to private information, examining how effectively they discern, manage, and safeguard sensitive data in diverse scenarios. This systematic evaluation helps us understand the degree to which these models comply with privacy protection guidelines and the effectiveness of their inherent safeguards against privacy breaches. Our observations indicate that existing Chinese large language models universally show privacy protection shortcomings. It seems that at the moment this widespread issue is unavoidable and may pose corresponding privacy risks in applications based on these models.
Related papers
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.
Their reliance on massive internet-sourced datasets for training brings notable privacy issues.
Certain application-specific scenarios may require fine-tuning these models on private data.
arXiv Detail & Related papers (2024-08-10T05:41:19Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
Large language models (LLMs) have made remarkable advancements in natural language processing.
These models are trained on vast datasets to exhibit powerful language understanding and generation capabilities.
Privacy and security issues have been revealed throughout their life cycle.
arXiv Detail & Related papers (2024-06-12T07:55:32Z) - SoK: Reducing the Vulnerability of Fine-tuned Language Models to
Membership Inference Attacks [1.03590082373586]
We provide the first systematic review of the vulnerability of large language models to membership inference attacks.
We find that some training methods provide significantly reduced privacy risk, with the combination of differential privacy and low-rank adaptors achieving the best privacy protection against these attacks.
arXiv Detail & Related papers (2024-03-13T12:46:51Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Can Language Models be Instructed to Protect Personal Information? [30.187731765653428]
We introduce PrivQA -- a benchmark to assess the privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario.
We find that adversaries can easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs.
We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections.
arXiv Detail & Related papers (2023-10-03T17:30:33Z) - Context-Aware Differential Privacy for Language Modeling [41.54238543400462]
This paper introduces Context-Aware Differentially Private Language Model (CADP-LM)
CADP-LM relies on the notion of emphcontext to define and audit the potentially sensitive information.
A unique characteristic of CADP-LM is its ability to target the protection of sensitive sentences and contexts only.
arXiv Detail & Related papers (2023-01-28T20:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.