Toward Interactive Regional Understanding in Vision-Large Language Models
- URL: http://arxiv.org/abs/2403.18260v1
- Date: Wed, 27 Mar 2024 05:22:06 GMT
- Title: Toward Interactive Regional Understanding in Vision-Large Language Models
- Authors: Jungbeom Lee, Sanghyuk Chun, Sangdoo Yun,
- Abstract summary: We introduce textbfRegionVLM, equipped with explicit regional modeling capabilities.
We leverage a dataset that contains a novel source of information, namely Localized Narratives.
Our experiments demonstrate that our single generalist model not only achieves an interactive dialogue system but also exhibits superior performance on various zero-shot region understanding tasks.
- Score: 42.43961173412382
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent Vision-Language Pre-training (VLP) models have demonstrated significant advancements. Nevertheless, these models heavily rely on image-text pairs that capture only coarse and global information of an image, leading to a limitation in their regional understanding ability. In this work, we introduce \textbf{RegionVLM}, equipped with explicit regional modeling capabilities, allowing them to understand user-indicated image regions. To achieve this, we design a simple yet innovative architecture, requiring no modifications to the model architecture or objective function. Additionally, we leverage a dataset that contains a novel source of information, namely Localized Narratives, which has been overlooked in previous VLP research. Our experiments demonstrate that our single generalist model not only achieves an interactive dialogue system but also exhibits superior performance on various zero-shot region understanding tasks, without compromising its ability for global image understanding.
Related papers
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - RegionGPT: Towards Region Understanding Vision Language Model [88.42271128373191]
RegionGPT (short as RGPT) is a novel framework designed for complex region-level captioning and understanding.
We develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions.
We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks.
arXiv Detail & Related papers (2024-03-04T18:58:08Z) - Optimization Efficient Open-World Visual Region Recognition [55.76437190434433]
RegionSpot integrates position-aware localization knowledge from a localization foundation model with semantic information from a ViL model.
Experiments in open-world object recognition show that our RegionSpot achieves significant performance gain over prior alternatives.
arXiv Detail & Related papers (2023-11-02T16:31:49Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream) is a novel neural architecture designed to enhance the language-image understanding capability of Large Language Models (LLMs)
Our approach bridges the gap between vision and language understanding, paving the way for the development of more sophisticated Document Intelligence Assistants.
arXiv Detail & Related papers (2023-05-24T11:59:13Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.