論文の概要: Towards Non-Exemplar Semi-Supervised Class-Incremental Learning
- arxiv url: http://arxiv.org/abs/2403.18291v1
- Date: Wed, 27 Mar 2024 06:28:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:06:46.069979
- Title: Towards Non-Exemplar Semi-Supervised Class-Incremental Learning
- Title(参考訳): 非経験的半監督型クラスインクリメンタルラーニングを目指して
- Authors: Wenzhuo Liu, Fei Zhu, Cheng-Lin Liu,
- Abstract要約: クラス増分学習は、古いクラスの識別性を保ちながら、新しいクラスを徐々に認識することを目的としている。
コントラスト学習と半教師付きインクリメンタルプロトタイプ分類器(Semi-IPC)を用いた非経験的半教師付きCILフレームワークを提案する。
Semi-IPCは教師なしの正規化で各クラスのプロトタイプを学習し、部分的にラベル付けされた新しいデータからモデルを漸進的に学習することを可能にする。
- 参考スコア(独自算出の注目度): 33.560003528712414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks perform remarkably well in close-world scenarios. However, novel classes emerged continually in real applications, making it necessary to learn incrementally. Class-incremental learning (CIL) aims to gradually recognize new classes while maintaining the discriminability of old ones. Existing CIL methods have two limitations: a heavy reliance on preserving old data for forgetting mitigation and the need for vast labeled data for knowledge adaptation. To overcome these issues, we propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC). On the one hand, contrastive learning helps the model learn rich representations, easing the trade-off between learning representations of new classes and forgetting that of old classes. On the other hand, Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data while maintaining the knowledge of old classes. Experiments on benchmark datasets demonstrate the strong performance of our method: without storing any old samples and only using less than 1% of labels, Semi-IPC outperforms advanced exemplar-based methods. We hope our work offers new insights for future CIL research. The code will be made publicly available.
- Abstract(参考訳): ディープニューラルネットワークは、近世界のシナリオで驚くほどよく機能する。
しかし、新しいクラスは実際のアプリケーションで継続的に現れ、漸進的に学ぶ必要がある。
クラスインクリメンタルラーニング(CIL)は,古いクラスを識別しやすくしながら,新しいクラスを徐々に認識することを目的としている。
既存のCIL手法には2つの制限がある: 緩和を忘れるために古いデータを保存することへの強い依存と、知識適応のための巨大なラベル付きデータの必要性である。
これらの課題を克服するために、コントラスト学習と半教師付きインクリメンタルプロトタイプ分類器(Semi-IPC)を備えた、非経験的半教師付きCILフレームワークを提案する。
一方、対照的な学習は、モデルがリッチな表現を学習し、新しいクラスの学習表現と古いクラスの学習表現とのトレードオフを緩和するのに役立つ。
一方、Semi-IPCは教師なし正規化で各クラスのプロトタイプを学習し、古いクラスの知識を維持しながら、部分的にラベル付けされた新しいデータから段階的に学習することができる。
従来のサンプルを保存せず、ラベルの1%未満しか使用せず、Semi-IPCは先進的な例に基づく手法よりも優れています。
私たちの研究が将来のCIL研究に新たな洞察を与えてくれることを願っています。
コードは公開されます。
関連論文リスト
- Happy: A Debiased Learning Framework for Continual Generalized Category Discovery [54.54153155039062]
本稿では,C-GCD(Continuous Generalized Category Discovery)の未探索課題について考察する。
C-GCDは、学習済みのクラスを認識する能力を維持しながら、ラベルのないデータから新しいクラスを漸進的に発見することを目的としている。
本稿では,ハードネスを意識したプロトタイプサンプリングとソフトエントロピー正規化を特徴とする,偏りのある学習フレームワークであるHappyを紹介する。
論文 参考訳(メタデータ) (2024-10-09T04:18:51Z) - PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
クラスインクリメンタルラーニング(CIL)は,旧クラスの識別性を維持しつつ,新たなクラスを段階的に認識することを目的としている。
既存のCILメソッドの多くは、例えば、古いデータの一部を格納して再トレーニングする例がある。
本稿では、入力空間における自己教師付き変換(SST)と深い特徴空間におけるプロトタイプ拡張(protoAug)を利用する、単純で斬新な二重バイアス低減フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T05:03:16Z) - Cs2K: Class-specific and Class-shared Knowledge Guidance for Incremental Semantic Segmentation [31.82132159867097]
増分的セグメンテーションは、古いクラスの知識を維持しながら、新しく遭遇したクラスをセグメンテーションする。
逐次的セマンティックセグメンテーションのためのクラス固有およびクラス共有知識(Cs2K)ガイダンスを提案する。
提案するCs2Kはセグメンテーション性能を著しく向上し,プラグアンドプレイである。
論文 参考訳(メタデータ) (2024-07-12T07:15:26Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
既存のメソッドでは、新しいクラスのサンプルをベースクラスに誤分類する傾向があり、新しいクラスのパフォーマンスが低下する。
我々は,新しいクラスの識別性を高めるため,簡易かつ効果的なトレーニング-フレア・カロブラシアン (TEEN) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-08T18:24:08Z) - Class Incremental Learning with Self-Supervised Pre-Training and
Prototype Learning [21.901331484173944]
授業の段階的学習における破滅的忘れの原因を分析した。
固定エンコーダと漸進的に更新されたプロトタイプ分類器を備えた2段階学習フレームワークを提案する。
本手法は古いクラスを保存したサンプルに頼らず,非例ベースのCIL法である。
論文 参考訳(メタデータ) (2023-08-04T14:20:42Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
モデルは新しいクラスを認識し、古いクラスに対する差別性を維持すべきである。
古いクラスを忘れずに新しいクラスを認識するタスクは、FSCIL ( few-shot class-incremental Learning) と呼ばれる。
我々は,LearnIng Multi-phase Incremental Tasks (LIMIT) によるメタラーニングに基づくFSCILの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-03-31T13:46:41Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。