論文の概要: Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
- arxiv url: http://arxiv.org/abs/2403.18301v1
- Date: Wed, 27 Mar 2024 06:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:06:46.047992
- Title: Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
- Title(参考訳): 非分解性物体の最適化のための選択混合微調整法
- Authors: Shrinivas Ramasubramanian, Harsh Rangwani, Sho Takemori, Kunal Samanta, Yuhei Umeda, Venkatesh Babu Radhakrishnan,
- Abstract要約: 現在の最先端の実証技術は、実用的で非分解不能な性能目標に対して、準最適性能を提供する。
本稿では,SelMixを提案する。SelMixは,事前学習モデルに対して,選択型ミキサアップに基づく安価な微調整技術である。
提案したSelMixファインタニングにより,ベンチマーク間での様々な非分解性目標の性能が大幅に向上することがわかった。
- 参考スコア(独自算出の注目度): 17.10165955576643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise in internet usage has led to the generation of massive amounts of data, resulting in the adoption of various supervised and semi-supervised machine learning algorithms, which can effectively utilize the colossal amount of data to train models. However, before deploying these models in the real world, these must be strictly evaluated on performance measures like worst-case recall and satisfy constraints such as fairness. We find that current state-of-the-art empirical techniques offer sub-optimal performance on these practical, non-decomposable performance objectives. On the other hand, the theoretical techniques necessitate training a new model from scratch for each performance objective. To bridge the gap, we propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models, to optimize for the desired objective. The core idea of our framework is to determine a sampling distribution to perform a mixup of features between samples from particular classes such that it optimizes the given objective. We comprehensively evaluate our technique against the existing empirical and theoretically principled methods on standard benchmark datasets for imbalanced classification. We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
- Abstract(参考訳): インターネット利用の増加により大量のデータが生成されるようになり、様々な教師付きおよび半教師付き機械学習アルゴリズムが採用され、モデルのトレーニングに膨大な量のデータを効果的に利用できるようになった。
しかし、これらのモデルを現実に展開する前には、最悪のケースリコールやフェアネスなどの制約を満たすようなパフォーマンス対策を厳格に評価する必要がある。
現在の最先端の実証技術は、これらの実用的で非分解不能なパフォーマンス目標に対して、準最適性能を提供する。
一方、理論的な手法では、各パフォーマンス目標に対して、スクラッチから新しいモデルをトレーニングする必要がある。
このギャップを埋めるため,選択型混合モデルのための安価な微調整技術であるSelMixを提案し,その目的を最適化する。
フレームワークの中核となる考え方は、サンプリング分布を決定し、与えられた目的を最適化するように、特定のクラスからのサンプル間の機能の混合を実行することです。
不均衡な分類のための標準ベンチマークデータセットにおいて、既存の経験的および理論的に原則化された手法に対して、我々の手法を包括的に評価する。
提案したSelMixファインタニングにより,ベンチマーク間での様々な非分解性目標の性能が大幅に向上することがわかった。
関連論文リスト
- Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - On the Robustness of Decision-Focused Learning [0.0]
決定焦点学習(Decision-Focused Learning, DFL)は、機械学習(ML)モデルを訓練し、不完全な最適化問題の欠落パラメータを予測するための新興学習パラダイムである。
DFLは、予測と最適化タスクを統合することで、エンドツーエンドシステムでMLモデルをトレーニングし、トレーニングとテストの目的の整合性を向上させる。
論文 参考訳(メタデータ) (2023-11-28T04:34:04Z) - Universal Semi-supervised Model Adaptation via Collaborative Consistency
Training [92.52892510093037]
我々は、Universal Semi-supervised Model Adaptation (USMA)と呼ばれる現実的で挑戦的なドメイン適応問題を導入する。
本稿では,2つのモデル間の予測整合性を規則化する協調的整合性トレーニングフレームワークを提案する。
実験により,いくつかのベンチマークデータセットにおける本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-07-07T08:19:40Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Building Resilience to Out-of-Distribution Visual Data via Input
Optimization and Model Finetuning [13.804184845195296]
本稿では,特定の目標視モデルに対する入力データを最適化する前処理モデルを提案する。
自律走行車におけるセマンティックセグメンテーションの文脈におけるアウト・オブ・ディストリビューションシナリオについて検討する。
提案手法により, 微調整モデルに匹敵するデータの性能を実現できることを示す。
論文 参考訳(メタデータ) (2022-11-29T14:06:35Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
我々は,半教師付き学習と移動学習を共同で検討し,より実践的で競争的なパラダイムへと導いた。
事前学習した重みとラベルなしの目標サンプルの両方の価値をよりよく活用するために、適応整合正則化を導入する。
提案手法は,Pseudo Label,Mean Teacher,MixMatchといった,最先端の半教師付き学習技術より優れた適応整合性正規化を実現する。
論文 参考訳(メタデータ) (2021-03-03T05:46:39Z) - Experimental Design for Overparameterized Learning with Application to
Single Shot Deep Active Learning [5.141687309207561]
現代の機械学習モデルは、大量のラベル付きデータに基づいて訓練されている。
大量のラベル付きデータへのアクセスは、しばしば制限またはコストがかかる。
トレーニングセットをキュレートするための新しい設計戦略を提案する。
論文 参考訳(メタデータ) (2020-09-27T11:27:49Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。