Doppler-assisted quantum resonances through swappable excitation pathways in Potassium vapor
- URL: http://arxiv.org/abs/2403.18319v1
- Date: Wed, 27 Mar 2024 07:45:04 GMT
- Title: Doppler-assisted quantum resonances through swappable excitation pathways in Potassium vapor
- Authors: Gourab Pal, Subhasish Dutta Gupta, Saptarishi Chaudhuri,
- Abstract summary: We report the observation of two additional sub-natural line width quantum interference in the $D$ manifold of $39K$ vapor.
The other two features appear exclusively because $39K$ ground hyperfine splitting is smaller than the Doppler broadened absorption profile.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report the observation of two additional sub-natural line width quantum interference in the $D_2$ manifold of $^{39}K$ vapor, in addition to the usual single Electromagnetically induced transparency peak. The other two features appear exclusively because $^{39}K$ ground hyperfine splitting is smaller than the Doppler broadened absorption profile. This allows probe and control beams to swap their transition pathways. The control beam detuning captures the nature of the coherence, therefore an unusual phenomenon of conversion from perfect transparency to enhanced absorption is observed and explained by utilizing adiabatic elimination of the excited state in the Master equation. Controlling such dark and bright resonances leads to new applications in quantum technologies viz. frequency offset laser stabilization and long-lived quantum memory.
Related papers
- Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Electromagnetically Induced Transparency and Optical Pumping in the
Hyperfine Paschen-Back Regime [0.0]
We report experiments of rubidium vapor in a high magnetic field under conditions of electromagnetically induced transparency (EIT) and optical pumping.
The 1.1 T static magnetic field decouples nuclear and electronic spins and shifts each magnetic state via the Zeeman effect.
We conclude that the cleanliness'' of this system greatly enhances the capabilities of quantum control in hot vapor.
arXiv Detail & Related papers (2023-07-17T15:05:14Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Controlling Frequency-Domain Hong-Ou-Mandel Interference via
Electromagnetically Induced Transparency [5.467400475482669]
Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclassical nature of single photons.
In this study, we investigate an electromagnetically induced transparency-based double-$Lambda$ four-wave mixing system.
arXiv Detail & Related papers (2023-02-14T08:22:09Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Effect of Closely-Spaced Excited States on Electromagnetically Induced
Transparency [0.0]
Electromagnetically induced transparency (EIT) is a well-known phenomenon due in part to its applicability to quantum devices such as quantum memories and quantum gates.
We present a theoretical study of the effect of two closely-spaced excited states on EIT and off-resonance Raman transitions.
arXiv Detail & Related papers (2019-12-27T18:01:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.