LC-LLM: Explainable Lane-Change Intention and Trajectory Predictions with Large Language Models
- URL: http://arxiv.org/abs/2403.18344v2
- Date: Mon, 5 Aug 2024 02:47:09 GMT
- Title: LC-LLM: Explainable Lane-Change Intention and Trajectory Predictions with Large Language Models
- Authors: Mingxing Peng, Xusen Guo, Xianda Chen, Meixin Zhu, Kehua Chen,
- Abstract summary: Existing motion prediction approaches have ample room for improvement, particularly in terms of long-term prediction accuracy and interpretability.
We propose LC-LLM, an explainable lane change prediction model that leverages the strong reasoning capabilities and self-explanation abilities of Large Language Models.
- Score: 8.624969693477448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure safe driving in dynamic environments, autonomous vehicles should possess the capability to accurately predict lane change intentions of surrounding vehicles in advance and forecast their future trajectories. Existing motion prediction approaches have ample room for improvement, particularly in terms of long-term prediction accuracy and interpretability. In this paper, we address these challenges by proposing LC-LLM, an explainable lane change prediction model that leverages the strong reasoning capabilities and self-explanation abilities of Large Language Models (LLMs). Essentially, we reformulate the lane change prediction task as a language modeling problem, processing heterogeneous driving scenario information as natural language prompts for LLMs and employing supervised fine-tuning to tailor LLMs specifically for lane change prediction task. Additionally, we finetune the Chain-of-Thought (CoT) reasoning to improve prediction transparency and reliability, and include explanatory requirements in the prompts during inference stage. Therefore, our LC-LLM model not only predicts lane change intentions and trajectories but also provides CoT reasoning and explanations for its predictions, enhancing its interpretability. Extensive experiments based on the large-scale highD dataset demonstrate the superior performance and interpretability of our LC-LLM in lane change prediction task. To the best of our knowledge, this is the first attempt to utilize LLMs for predicting lane change behavior. Our study shows that LLMs can effectively encode comprehensive interaction information for driving behavior understanding.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.
Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Traj-LLM: A New Exploration for Empowering Trajectory Prediction with Pre-trained Large Language Models [12.687494201105066]
This paper proposes Traj-LLM, the first to investigate the potential of using Large Language Models (LLMs) to generate future motion from agents' past/observed trajectories and scene semantics.
LLMs' powerful comprehension abilities capture a spectrum of high-level scene knowledge and interactive information.
Emulating the human-like lane focus cognitive function, we introduce lane-aware probabilistic learning powered by the pioneering Mamba module.
arXiv Detail & Related papers (2024-05-08T09:28:04Z) - Towards Explainable Traffic Flow Prediction with Large Language Models [36.86937188565623]
We propose a Traffic flow Prediction model based on Large Language Models (LLMs) to generate explainable traffic predictions.
By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data.
Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions.
arXiv Detail & Related papers (2024-04-03T07:14:15Z) - Large Language Models Powered Context-aware Motion Prediction in Autonomous Driving [13.879945446114956]
We utilize Large Language Models (LLMs) to enhance the global traffic context understanding for motion prediction tasks.
Considering the cost associated with LLMs, we propose a cost-effective deployment strategy.
Our research offers valuable insights into enhancing the understanding of traffic scenes of LLMs and the motion prediction performance of autonomous driving.
arXiv Detail & Related papers (2024-03-17T02:06:49Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
We propose a framework to teach Large Language Models (LLMs) to generate explainable stock predictions.
A reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations.
Our framework can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient.
arXiv Detail & Related papers (2024-02-06T03:18:58Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Explainable Online Lane Change Predictions on a Digital Twin with a
Layer Normalized LSTM and Layer-wise Relevance Propagation [0.8137198664755597]
Long short-term memory (LSTM) is a leading driver in the field of lane change prediction for manoeuvre anticipation.
This work presents an innovative approach and a technical implementation for explaining lane change predictions of layer normalized LSTMs.
The core implementation includes consuming live data from a digital twin on a German highway, live predictions and explanations of lane changes by extending LRP to layer normalized LSTMs, and an interface for communicating and explaining the predictions to a human user.
arXiv Detail & Related papers (2022-04-04T07:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.