Annealed Winner-Takes-All for Motion Forecasting
- URL: http://arxiv.org/abs/2409.11172v2
- Date: Wed, 18 Sep 2024 09:35:15 GMT
- Title: Annealed Winner-Takes-All for Motion Forecasting
- Authors: Yihong Xu, Victor Letzelter, Mickaël Chen, Éloi Zablocki, Matthieu Cord,
- Abstract summary: We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.
Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
- Score: 48.200282332176094
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In autonomous driving, motion prediction aims at forecasting the future trajectories of nearby agents, helping the ego vehicle to anticipate behaviors and drive safely. A key challenge is generating a diverse set of future predictions, commonly addressed using data-driven models with Multiple Choice Learning (MCL) architectures and Winner-Takes-All (WTA) training objectives. However, these methods face initialization sensitivity and training instabilities. Additionally, to compensate for limited performance, some approaches rely on training with a large set of hypotheses, requiring a post-selection step during inference to significantly reduce the number of predictions. To tackle these issues, we take inspiration from annealed MCL, a recently introduced technique that improves the convergence properties of MCL methods through an annealed Winner-Takes-All loss (aWTA). In this paper, we demonstrate how the aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance using only a minimal set of hypotheses, eliminating the need for the cumbersome post-selection step. Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA and yields significant improvements. To facilitate the application of our approach to future motion forecasting models, the code will be made publicly available upon acceptance: https://github.com/valeoai/MF_aWTA.
Related papers
- Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction [12.336412741837407]
This study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module.
The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios.
arXiv Detail & Related papers (2024-02-29T17:36:39Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
This research investigates the performance of various motion models in combination with numerical solvers for the prediction task.
The study shows that simpler models, such as low-order integrator models, are preferred over more complex, e.g., kinematic models, to achieve accurate predictions.
arXiv Detail & Related papers (2023-04-11T10:15:20Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - FloMo: Tractable Motion Prediction with Normalizing Flows [0.0]
We model motion prediction as a density estimation problem with a normalizing flow between a noise sample and the future motion distribution.
Our model, named FloMo, allows likelihoods to be computed in a single network pass and can be trained directly with maximum likelihood estimation.
Our method achieves state-of-the-art performance on three popular prediction datasets, with a significant gap to most competing models.
arXiv Detail & Related papers (2021-03-05T11:35:27Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.