Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback
- URL: http://arxiv.org/abs/2403.18349v3
- Date: Thu, 8 Aug 2024 08:57:23 GMT
- Title: Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback
- Authors: Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai Fan, Lu Chen, Kai Yu,
- Abstract summary: Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations.
We present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF)
- Score: 14.120154004011084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations, due to their limitations in discerning questions beyond their knowledge scope. While addressing hallucination has been a focal point in research, previous efforts primarily concentrate on enhancing correctness without giving due consideration to the significance of rejection mechanisms. In this paper, we conduct a comprehensive examination of the role of rejection, introducing the notion of model reliability along with corresponding metrics. These metrics measure the model's ability to provide accurate responses while adeptly rejecting questions exceeding its knowledge boundaries, thereby minimizing hallucinations. To improve the inherent reliability of LLMs, we present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF). RLKF leverages knowledge feedback to dynamically determine the model's knowledge boundary and trains a reliable reward model to encourage the refusal of out-of-knowledge questions. Experimental results on mathematical questions affirm the substantial efficacy of RLKF in significantly enhancing LLM reliability.
Related papers
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons [13.266817091775042]
We investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks.
We reveal that LLMs fail to harness the critical factual associations under certain circumstances.
We assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks.
arXiv Detail & Related papers (2024-08-06T15:07:08Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Learning to Trust Your Feelings: Leveraging Self-awareness in LLMs for
Hallucination Mitigation [9.730412606588335]
We evaluate the ability of Large Language Models (LLMs) to discern and express their internal knowledge state.
We propose a Reinforcement Learning from Knowledge Feedback (RLKF) training framework, leveraging reinforcement learning to enhance the factuality and honesty of LLMs.
arXiv Detail & Related papers (2024-01-27T16:19:30Z) - Knowledge Verification to Nip Hallucination in the Bud [69.79051730580014]
We demonstrate the feasibility of mitigating hallucinations by verifying and minimizing the inconsistency between external knowledge present in the alignment data and the intrinsic knowledge embedded within foundation LLMs.
We propose a novel approach called Knowledge Consistent Alignment (KCA), which employs a well-aligned LLM to automatically formulate assessments based on external knowledge.
We demonstrate the superior efficacy of KCA in reducing hallucinations across six benchmarks, utilizing foundation LLMs of varying backbones and scales.
arXiv Detail & Related papers (2024-01-19T15:39:49Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.