Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons
- URL: http://arxiv.org/abs/2408.03247v3
- Date: Tue, 1 Oct 2024 01:48:58 GMT
- Title: Unveiling Factual Recall Behaviors of Large Language Models through Knowledge Neurons
- Authors: Yifei Wang, Yuheng Chen, Wanting Wen, Yu Sheng, Linjing Li, Daniel Dajun Zeng,
- Abstract summary: We investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks.
We reveal that LLMs fail to harness the critical factual associations under certain circumstances.
We assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks.
- Score: 13.266817091775042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate whether Large Language Models (LLMs) actively recall or retrieve their internal repositories of factual knowledge when faced with reasoning tasks. Through an analysis of LLMs' internal factual recall at each reasoning step via Knowledge Neurons, we reveal that LLMs fail to harness the critical factual associations under certain circumstances. Instead, they tend to opt for alternative, shortcut-like pathways to answer reasoning questions. By manually manipulating the recall process of parametric knowledge in LLMs, we demonstrate that enhancing this recall process directly improves reasoning performance whereas suppressing it leads to notable degradation. Furthermore, we assess the effect of Chain-of-Thought (CoT) prompting, a powerful technique for addressing complex reasoning tasks. Our findings indicate that CoT can intensify the recall of factual knowledge by encouraging LLMs to engage in orderly and reliable reasoning. Furthermore, we explored how contextual conflicts affect the retrieval of facts during the reasoning process to gain a comprehensive understanding of the factual recall behaviors of LLMs. Code and data will be available soon.
Related papers
- Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
Knowledge documents for large language models (LLMs) may conflict with the memory of LLMs due to outdated or incorrect knowledge.
We construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering.
arXiv Detail & Related papers (2024-04-04T16:40:11Z) - Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback [14.120154004011084]
Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations.
We present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF)
arXiv Detail & Related papers (2024-03-27T08:39:56Z) - KnowTuning: Knowledge-aware Fine-tuning for Large Language Models [83.5849717262019]
We propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.
KnowTuning generates more facts with less factual error rate under fine-grained facts evaluation.
arXiv Detail & Related papers (2024-02-17T02:54:32Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - Temporal Knowledge Question Answering via Abstract Reasoning Induction [32.08799860090592]
This study addresses the challenge of enhancing temporal knowledge reasoning in Large Language Models (LLMs)
We propose Abstract Reasoning Induction (ARI) framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based.
Our approach achieves remarkable improvements, with relative gains of 29.7% and 9.27% on two temporal QA datasets.
arXiv Detail & Related papers (2023-11-15T17:46:39Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.