論文の概要: MonoHair: High-Fidelity Hair Modeling from a Monocular Video
- arxiv url: http://arxiv.org/abs/2403.18356v1
- Date: Wed, 27 Mar 2024 08:48:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:47:16.970811
- Title: MonoHair: High-Fidelity Hair Modeling from a Monocular Video
- Title(参考訳): MonoHair:モノクロビデオからの高忠実ヘアモデリング
- Authors: Keyu Wu, Lingchen Yang, Zhiyi Kuang, Yao Feng, Xutao Han, Yuefan Shen, Hongbo Fu, Kun Zhou, Youyi Zheng,
- Abstract要約: MonoHairはモノクロビデオから高忠実度毛髪再構築を実現するための汎用フレームワークである。
提案手法は, 毛髪のモデリング過程を, 正確な外装再構築と内部構造推定の2つの段階に分岐させる。
実験により,本手法は多彩なヘアスタイルにまたがって頑健性を示し,最先端の性能を実現していることが示された。
- 参考スコア(独自算出の注目度): 40.27026803872373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Undoubtedly, high-fidelity 3D hair is crucial for achieving realism, artistic expression, and immersion in computer graphics. While existing 3D hair modeling methods have achieved impressive performance, the challenge of achieving high-quality hair reconstruction persists: they either require strict capture conditions, making practical applications difficult, or heavily rely on learned prior data, obscuring fine-grained details in images. To address these challenges, we propose MonoHair,a generic framework to achieve high-fidelity hair reconstruction from a monocular video, without specific requirements for environments. Our approach bifurcates the hair modeling process into two main stages: precise exterior reconstruction and interior structure inference. The exterior is meticulously crafted using our Patch-based Multi-View Optimization (PMVO). This method strategically collects and integrates hair information from multiple views, independent of prior data, to produce a high-fidelity exterior 3D line map. This map not only captures intricate details but also facilitates the inference of the hair's inner structure. For the interior, we employ a data-driven, multi-view 3D hair reconstruction method. This method utilizes 2D structural renderings derived from the reconstructed exterior, mirroring the synthetic 2D inputs used during training. This alignment effectively bridges the domain gap between our training data and real-world data, thereby enhancing the accuracy and reliability of our interior structure inference. Lastly, we generate a strand model and resolve the directional ambiguity by our hair growth algorithm. Our experiments demonstrate that our method exhibits robustness across diverse hairstyles and achieves state-of-the-art performance. For more results, please refer to our project page https://keyuwu-cs.github.io/MonoHair/.
- Abstract(参考訳): 高忠実な3D毛髪は、コンピュータグラフィックスにおける現実主義、芸術的表現、没入の実現に不可欠である。
既存の3Dヘアモデリング手法は目覚ましい性能を達成しているが、高品質なヘアリコンストラクションを実現するための課題は、厳密なキャプチャ条件を必要とし、実用的な応用を困難にするか、学習前のデータに強く依存し、画像のきめ細かい詳細を隠蔽することである。
これらの課題に対処するために,モノクロビデオから高忠実度毛髪再構築を実現するための汎用フレームワークであるMonoHairを提案する。
提案手法は, 毛髪のモデリング過程を, 正確な外装再構築と内部構造推定の2つの段階に分岐させる。
外観は、当社のPatch-based Multi-View Optimization (PMVO)を使って細心の注意を払って設計されています。
本手法は, 先行データに依存しない複数のビューから毛髪情報を戦略的に収集・統合し, 高忠実度外部3Dラインマップを作成する。
この地図は複雑な細部を捉えるだけでなく、毛髪の内部構造を推測するのに役立つ。
室内では,データ駆動型多視点3Dヘア再構築方式を採用している。
この方法は、再構成された外装から得られた2次元構造的レンダリングを利用して、トレーニング中に使用される合成2次元入力を反映する。
このアライメントは、トレーニングデータと実世界のデータのドメインギャップを効果的に橋渡しし、内部構造推論の精度と信頼性を高める。
最後に, ヘア成長アルゴリズムを用いて, ストランドモデルを生成し, 方向のあいまいさを解消する。
実験により,本手法は多彩なヘアスタイルにまたがって頑健性を示し,最先端の性能を実現していることが示された。
さらなる結果については、プロジェクトのページ https://keyuwu-cs.github.io/MonoHair/を参照してください。
関連論文リスト
- Towards Unified 3D Hair Reconstruction from Single-View Portraits [27.404011546957104]
そこで本研究では,統一パイプラインによるヘアタイプの一視点3D再構成を実現するための新しい手法を提案する。
本実験は, 単一視像からの編み型3次元毛髪と非編み型3次元毛髪の再構築が可能であることを示す。
論文 参考訳(メタデータ) (2024-09-25T12:21:31Z) - Human Hair Reconstruction with Strand-Aligned 3D Gaussians [39.32397354314153]
従来のヘアストランドと3Dガウスの二重表現を用いた新しいヘアモデリング手法を提案する。
ヒトのアバターをモデル化するための非構造ガウス的アプローチとは対照的に,本手法は3Dポリラインや鎖を用いて髪を再構築する。
提案手法はGaussian Haircutと呼ばれ, 合成シーンと実シーンで評価し, ストランドベースヘア再構築作業における最先端性能を実証する。
論文 参考訳(メタデータ) (2024-09-23T07:49:46Z) - Perm: A Parametric Representation for Multi-Style 3D Hair Modeling [22.790597419351528]
Permは、さまざまな毛髪関連の応用を促進するために設計された人間の3D毛髪のパラメトリックモデルである。
周波数領域におけるPCAに基づくストランド表現を用いて,グローバルヘア形状と局所ストランド詳細をアンタングル化することを提案する。
これらのテクスチャは後に異なる生成モデルでパラメータ化され、ヘアモデリングプロセスの一般的な段階をエミュレートする。
論文 参考訳(メタデータ) (2024-07-28T10:05:11Z) - HAAR: Text-Conditioned Generative Model of 3D Strand-based Human
Hairstyles [85.12672855502517]
そこで本研究では,3次元ヘアスタイルのための新しいストランドベース生成モデルであるHAARについて紹介する。
テキスト入力に基づいて、HAARは現代のコンピュータグラフィックスエンジンで生産レベルの資産として使用できる3Dヘアスタイルを生成する。
論文 参考訳(メタデータ) (2023-12-18T19:19:32Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - Neural Haircut: Prior-Guided Strand-Based Hair Reconstruction [4.714310894654027]
本研究は, 単眼ビデオや多視点画像から, 鎖レベルでの正確な髪形再構成を実現する手法を提案する。
ニューラル・ヘアカット(Neural Haircut)と呼ばれるこの組み合わせシステムは、再建されたヘアスタイルの高度なリアリズムとパーソナライズを実現している。
論文 参考訳(メタデータ) (2023-06-09T13:08:34Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
本稿では,高フォトリアリスティックなデジタルヘッドアバターを構築するための新しいアプローチを提案する。
本手法はニューラルネットワークによってパラメータ化された暗黙関数を用いて標準空間を学習する。
テスト時,本手法は単眼のRGBビデオによって駆動される。
論文 参考訳(メタデータ) (2023-03-25T13:56:33Z) - HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for
Single-View 3D Hair Modeling [55.57803336895614]
学習型単一視点3Dヘアモデリングの課題に対処する。
まず, ストランドマップと深度マップからなる新しい中間表現をHairStepと呼ぶ。
HairStepは正確な3Dヘアモデリングに十分な情報を提供するだけでなく、実際の画像から推測できる。
論文 参考訳(メタデータ) (2023-03-05T15:28:13Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。