Density-guided Translator Boosts Synthetic-to-Real Unsupervised Domain Adaptive Segmentation of 3D Point Clouds
- URL: http://arxiv.org/abs/2403.18469v1
- Date: Wed, 27 Mar 2024 11:28:57 GMT
- Title: Density-guided Translator Boosts Synthetic-to-Real Unsupervised Domain Adaptive Segmentation of 3D Point Clouds
- Authors: Zhimin Yuan, Wankang Zeng, Yanfei Su, Weiquan Liu, Ming Cheng, Yulan Guo, Cheng Wang,
- Abstract summary: 3D synthetic-to-real unsupervised domain adaptive segmentation is crucial to annotating new domains.
We propose a density-guided translator (DGT) which translates point density between domains and integrates it into a two-stage self-training pipeline named DGT-ST.
Experiments on two synthetic-to-real segmentation tasks demonstrate that DGT-ST outperforms state-of-the-art methods.
- Score: 36.26157749644684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D synthetic-to-real unsupervised domain adaptive segmentation is crucial to annotating new domains. Self-training is a competitive approach for this task, but its performance is limited by different sensor sampling patterns (i.e., variations in point density) and incomplete training strategies. In this work, we propose a density-guided translator (DGT), which translates point density between domains, and integrates it into a two-stage self-training pipeline named DGT-ST. First, in contrast to existing works that simultaneously conduct data generation and feature/output alignment within unstable adversarial training, we employ the non-learnable DGT to bridge the domain gap at the input level. Second, to provide a well-initialized model for self-training, we propose a category-level adversarial network in stage one that utilizes the prototype to prevent negative transfer. Finally, by leveraging the designs above, a domain-mixed self-training method with source-aware consistency loss is proposed in stage two to narrow the domain gap further. Experiments on two synthetic-to-real segmentation tasks (SynLiDAR $\rightarrow$ semanticKITTI and SynLiDAR $\rightarrow$ semanticPOSS) demonstrate that DGT-ST outperforms state-of-the-art methods, achieving 9.4$\%$ and 4.3$\%$ mIoU improvements, respectively. Code is available at \url{https://github.com/yuan-zm/DGT-ST}.
Related papers
- UDA4Inst: Unsupervised Domain Adaptation for Instance Segmentation [5.982874955955054]
Unsupervised Domain Adaptation (UDA) transfers knowledge from labeled synthetic data to unlabeled real-world data.
UDA methods for synthetic to real-world domains (synth-to-real) show remarkable performance in tasks such as semantic segmentation and object detection.
We introduce textbfUDA4Inst, a powerful framework for synth-to-real UDA in instance segmentation.
arXiv Detail & Related papers (2024-05-15T19:53:52Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - QuadFormer: Quadruple Transformer for Unsupervised Domain Adaptation in
Power Line Segmentation of Aerial Images [12.840195641761323]
We propose a novel framework designed for domain adaptive semantic segmentation.
The hierarchical quadruple transformer combines cross-attention and self-attention mechanisms to adapt transferable context.
We present two datasets - ARPLSyn and ARPLReal - to further advance research in unsupervised domain adaptive powerline segmentation.
arXiv Detail & Related papers (2022-11-29T03:15:27Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
Cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to mismatch between training and testing distributions.
Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data.
This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm.
arXiv Detail & Related papers (2022-06-20T14:02:53Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Deep Co-Training with Task Decomposition for Semi-Supervised Domain
Adaptation [80.55236691733506]
Semi-supervised domain adaptation (SSDA) aims to adapt models trained from a labeled source domain to a different but related target domain.
We propose to explicitly decompose the SSDA task into two sub-tasks: a semi-supervised learning (SSL) task in the target domain and an unsupervised domain adaptation (UDA) task across domains.
arXiv Detail & Related papers (2020-07-24T17:57:54Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.