Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation
- URL: http://arxiv.org/abs/2208.10716v1
- Date: Tue, 23 Aug 2022 03:48:48 GMT
- Title: Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation
- Authors: Weihao Yan, Yeqiang Qian, Chunxiang Wang, Ming Yang
- Abstract summary: Unsupervised domain adaptation (UDA) for semantic segmentation has recently gained increasing research attention.
In this paper, we propose a novel two-stage entropy-based UDA method for semantic segmentation.
Our method achieves state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the lightweight BiSeNet.
- Score: 25.626882426111198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is an important task for intelligent vehicles to
understand the environment. Current deep learning methods require large amounts
of labeled data for training. Manual annotation is expensive, while simulators
can provide accurate annotations. However, the performance of the semantic
segmentation model trained with the data of the simulator will significantly
decrease when applied in the actual scene. Unsupervised domain adaptation (UDA)
for semantic segmentation has recently gained increasing research attention,
aiming to reduce the domain gap and improve the performance on the target
domain. In this paper, we propose a novel two-stage entropy-based UDA method
for semantic segmentation. In stage one, we design a threshold-adaptative
unsupervised focal loss to regularize the prediction in the target domain,
which has a mild gradient neutralization mechanism and mitigates the problem
that hard samples are barely optimized in entropy-based methods. In stage two,
we introduce a data augmentation method named cross-domain image mixing (CIM)
to bridge the semantic knowledge from two domains. Our method achieves
state-of-the-art 58.4% and 59.6% mIoUs on SYNTHIA-to-Cityscapes and
GTA5-to-Cityscapes using DeepLabV2 and competitive performance using the
lightweight BiSeNet.
Related papers
- Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
We propose a two-stage approach for source-free domain adaptive image segmentation.
We focus on generating target-specific pseudo labels while suppressing high entropy regions.
In the second stage, we focus on adapting the network for task-specific representation.
arXiv Detail & Related papers (2022-03-29T17:50:22Z) - Edge-preserving Domain Adaptation for semantic segmentation of Medical
Images [0.0]
Domain adaptation is a technique to address the lack of massive amounts of labeled data in unseen environments.
We propose a model that adapts between domains using cycle-consistent loss while maintaining edge details of the original images.
We demonstrate the effectiveness of our algorithm by comparing it to other approaches on two eye fundus vessels segmentation datasets.
arXiv Detail & Related papers (2021-11-18T18:14:33Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
We propose a novel two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation.
We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-20T16:13:00Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
Unsupervised domain adaptation for semantic segmentation aims to make models trained on synthetic data adapt to real images.
Previous feature-level adversarial learning methods only consider adapting models on the high-level semantic features.
We present the first attempt at explicitly using low-level edge information, which has a small inter-domain gap, to guide the transfer of semantic information.
arXiv Detail & Related papers (2021-09-18T11:51:31Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
We introduce feature-level space-shaping regularization strategies to reduce the domain discrepancy in semantic segmentation.
We verify the effectiveness of such methods in the autonomous driving setting.
arXiv Detail & Related papers (2021-04-06T16:07:22Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.