CT-3DFlow : Leveraging 3D Normalizing Flows for Unsupervised Detection of Pathological Pulmonary CT scans
- URL: http://arxiv.org/abs/2403.18514v1
- Date: Wed, 27 Mar 2024 12:44:57 GMT
- Title: CT-3DFlow : Leveraging 3D Normalizing Flows for Unsupervised Detection of Pathological Pulmonary CT scans
- Authors: Aissam Djahnine, Alexandre Popoff, Emilien Jupin-Delevaux, Vincent Cottin, Olivier Nempont, Loic Boussel,
- Abstract summary: Normalizing Flows (NF) have the ability to directly learn the probability distribution of training examples through an invertible architecture.
We leverage this property in a novel 3D NF-based model named CT-3DFlow, specifically tailored for patient-level pulmonary pathology detection in chest CT data.
Our model is trained unsupervised on healthy 3D pulmonary CT patches, and detects deviations from its log-likelihood distribution as anomalies.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised pathology detection can be implemented by training a model on healthy data only and measuring the deviation from the training set upon inference, for example with CNN-based feature extraction and one-class classifiers, or reconstruction-score-based methods such as AEs, GANs and Diffusion models. Normalizing Flows (NF) have the ability to directly learn the probability distribution of training examples through an invertible architecture. We leverage this property in a novel 3D NF-based model named CT-3DFlow, specifically tailored for patient-level pulmonary pathology detection in chest CT data. Our model is trained unsupervised on healthy 3D pulmonary CT patches, and detects deviations from its log-likelihood distribution as anomalies. We aggregate patches-level likelihood values from a patient's CT scan to provide a patient-level 'normal'/'abnormal' prediction. Out-of-distribution detection performance is evaluated using expert annotations on a separate chest CT test dataset, outperforming other state-of-the-art methods.
Related papers
- Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules [5.058992545593932]
The 3D simulation model of the lung was established by using the reconstruction method.
A computer aided pulmonary nodule detection model was constructed.
The recognition rate was significantly improved compared to conventional diagnostic methods.
arXiv Detail & Related papers (2024-06-19T04:27:27Z) - Custom Pretrainings and Adapted 3D-ConvNeXt Architecture for COVID
Detection and Severity Prediction [14.804451764265025]
We introduce an neural network for the prediction of the severity of lung damage and the detection of infection using three-dimensional CT-scans.
In order to test the performance of our model, we participate in the 2nd COV19D Competition for severity prediction and infection detection.
arXiv Detail & Related papers (2022-06-30T07:09:28Z) - 3D unsupervised anomaly detection and localization through virtual
multi-view projection and reconstruction: Clinical validation on low-dose
chest computed tomography [2.2302915692528367]
We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction.
The proposed method improves the patient-level anomaly detection by 10% compared with a gold standard based on supervised learning.
It localizes the anomaly region with 93% accuracy, demonstrating its high performance.
arXiv Detail & Related papers (2022-06-18T13:22:00Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
impured training data [53.122045119395594]
We study how unhealthy samples within the training data affect anomaly detection performance for brain MRI-scans.
We evaluate a method to identify falsely labeled samples directly during training based on the reconstruction error of the AE.
arXiv Detail & Related papers (2022-04-12T13:05:18Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Unsupervised 3D Brain Anomaly Detection [0.0]
Anomaly detection (AD) is the identification of data samples that do not fit a learned data distribution.
Deep generative models, such as Generative Adrial Networks (GANs), can be exploited to capture anatomical variability.
This study exemplifies the first AD approach that can efficiently handle volumetric data and detect 3D brain anomalies in one model.
arXiv Detail & Related papers (2020-10-09T17:59:17Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
We present a label-free approach for segmenting COVID-19 lesions in CT via pixel-level anomaly modeling.
Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong, exhibit strong patterns.
Our experiments on three different datasets validate the effectiveness of NormNet.
arXiv Detail & Related papers (2020-09-08T12:38:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.