Custom Pretrainings and Adapted 3D-ConvNeXt Architecture for COVID
Detection and Severity Prediction
- URL: http://arxiv.org/abs/2206.15073v1
- Date: Thu, 30 Jun 2022 07:09:28 GMT
- Title: Custom Pretrainings and Adapted 3D-ConvNeXt Architecture for COVID
Detection and Severity Prediction
- Authors: Daniel Kienzle, Julian Lorenz, Robin Sch\"on, Katja Ludwig, Rainer
Lienhart
- Abstract summary: We introduce an neural network for the prediction of the severity of lung damage and the detection of infection using three-dimensional CT-scans.
In order to test the performance of our model, we participate in the 2nd COV19D Competition for severity prediction and infection detection.
- Score: 14.804451764265025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since COVID strongly affects the respiratory system, lung CT scans can be
used for the analysis of a patients health. We introduce an neural network for
the prediction of the severity of lung damage and the detection of infection
using three-dimensional CT-scans. Therefore, we adapt the recent ConvNeXt model
to process three-dimensional data. Furthermore, we introduce different
pretraining methods specifically adjusted to improve the models ability to
handle three-dimensional CT-data. In order to test the performance of our
model, we participate in the 2nd COV19D Competition for severity prediction and
infection detection.
Related papers
- High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
Acute respiratory distress syndrome (ARDS) is a severe condition characterized by lung inflammation and respiratory failure, with a high mortality rate of approximately 40%.
Traditional imaging methods, such as chest X-rays, provide only two-dimensional views, limiting their effectiveness in fully assessing lung pathology.
This study synthesizes high-fidelity 3D lung CT from 2D generated X-ray images with associated physiological parameters using a score-based 3D residual diffusion model.
arXiv Detail & Related papers (2024-09-26T18:22:34Z) - CT-3DFlow : Leveraging 3D Normalizing Flows for Unsupervised Detection of Pathological Pulmonary CT scans [37.69303106863453]
Normalizing Flows (NF) have the ability to directly learn the probability distribution of training examples through an invertible architecture.
We leverage this property in a novel 3D NF-based model named CT-3DFlow, specifically tailored for patient-level pulmonary pathology detection in chest CT data.
Our model is trained unsupervised on healthy 3D pulmonary CT patches, and detects deviations from its log-likelihood distribution as anomalies.
arXiv Detail & Related papers (2024-03-27T12:44:57Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - COVID-Net CT-S: 3D Convolutional Neural Network Architectures for
COVID-19 Severity Assessment using Chest CT Images [85.00197722241262]
We introduce COVID-Net CT-S, a suite of deep convolutional neural networks for predicting lung disease severity due to COVID-19 infection.
A 3D residual architecture design is leveraged to learn volumetric visual indicators characterizing the degree of COVID-19 lung disease severity.
arXiv Detail & Related papers (2021-05-04T04:44:41Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.