Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models
- URL: http://arxiv.org/abs/2403.18517v3
- Date: Sat, 8 Jun 2024 11:41:26 GMT
- Title: Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models
- Authors: Jeremy E. Cohen, Valentin Leplat,
- Abstract summary: We show that scale-invariance inherent to low-rank approximation models causes an implicit regularization with both unexpected beneficial and detrimental effects.
We derive a generic Majorization Minimization algorithm that handles many regularized nonnegative low-rank approximations.
We showcase our contributions on sparse Nonnegative Matrix Factorization, ridge-regularized Canonical Polyadic decomposition and sparse Nonnegative Tucker Decomposition.
- Score: 3.6034001987137767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regularized nonnegative low-rank approximations such as sparse Nonnegative Matrix Factorization or sparse Nonnegative Tucker Decomposition are an important branch of dimensionality reduction models with enhanced interpretability. However, from a practical perspective, the choice of regularizers and regularization coefficients, as well as the design of efficient algorithms, is challenging because of the multifactor nature of these models and the lack of theory to back these choices. This paper aims at improving upon these issues. By studying a more general model called the Homogeneous Regularized Scale-Invariant, we prove that the scale-invariance inherent to low-rank approximation models causes an implicit regularization with both unexpected beneficial and detrimental effects. This observation allows to better understand the effect of regularization functions in low-rank approximation models, to guide the choice of the regularization hyperparameters, and to design balancing strategies to enhance the convergence speed of dedicated optimization algorithms. Some of these results were already known but restricted to specific instances of regularized low-rank approximations. We also derive a generic Majorization Minimization algorithm that handles many regularized nonnegative low-rank approximations, with convergence guarantees. We showcase our contributions on sparse Nonnegative Matrix Factorization, ridge-regularized Canonical Polyadic decomposition and sparse Nonnegative Tucker Decomposition.
Related papers
- A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
We propose a framework for the analysis of the low-rank approximation error in Frobenius norm for centered and non-standard matrices.
Under minimal assumptions, we derive accurate bounds in expectation and probability.
Our bounds have clear interpretations that enable us to derive properties and motivate practical choices.
arXiv Detail & Related papers (2024-05-08T04:51:56Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Amortized backward variational inference in nonlinear state-space models [0.0]
We consider the problem of state estimation in general state-space models using variational inference.
We establish for the first time that, under mixing assumptions, the variational approximation of expectations of additive state functionals induces an error which grows at most linearly in the number of observations.
arXiv Detail & Related papers (2022-06-01T08:35:54Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
One of the arduous tasks in supply chain modelling is to build robust models against irregular variations.
We have introduced a novel methodology namely, Pareto Optimization to handle uncertainties and bound the entropy of such uncertainties by explicitly modelling them under some apriori assumptions.
arXiv Detail & Related papers (2020-04-24T21:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.