Data-efficient Large Vision Models through Sequential Autoregression
- URL: http://arxiv.org/abs/2402.04841v1
- Date: Wed, 7 Feb 2024 13:41:53 GMT
- Title: Data-efficient Large Vision Models through Sequential Autoregression
- Authors: Jianyuan Guo, Zhiwei Hao, Chengcheng Wang, Yehui Tang, Han Wu, Han Hu,
Kai Han, Chang Xu
- Abstract summary: We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
- Score: 58.26179273091461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training general-purpose vision models on purely sequential visual data,
eschewing linguistic inputs, has heralded a new frontier in visual
understanding. These models are intended to not only comprehend but also
seamlessly transit to out-of-domain tasks. However, current endeavors are
hamstrung by an over-reliance on colossal models, exemplified by models with
upwards of 3B parameters, and the necessity for an extensive corpus of visual
data, often comprising a staggering 400B tokens. In this paper, we delve into
the development of an efficient, autoregression-based vision model,
innovatively architected to operate on a limited dataset. We meticulously
demonstrate how this model achieves proficiency in a spectrum of visual tasks
spanning both high-level and low-level semantic understanding during the
testing phase. Our empirical evaluations underscore the model's agility in
adapting to various tasks, heralding a significant reduction in the parameter
footprint, and a marked decrease in training data requirements, thereby paving
the way for more sustainable and accessible advancements in the field of
generalist vision models. The code is available at
https://github.com/ggjy/DeLVM.
Related papers
- LaVin-DiT: Large Vision Diffusion Transformer [99.98106406059333]
LaVin-DiT is a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework.
We introduce key innovations to optimize generative performance for vision tasks.
The model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks.
arXiv Detail & Related papers (2024-11-18T12:05:27Z) - On Efficient Language and Vision Assistants for Visually-Situated Natural Language Understanding: What Matters in Reading and Reasoning [33.89483627891117]
Recent advancements in language and vision assistants have showcased impressive capabilities but suffer from a lack of transparency.
Open-source models handle general image tasks effectively, but face challenges with the high computational demands of complex visually-situated text understanding.
This study aims to redefine the design of vision-language models by identifying key components and creating efficient models with constrained inference costs.
arXiv Detail & Related papers (2024-06-17T17:57:30Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - SeiT++: Masked Token Modeling Improves Storage-efficient Training [36.95646819348317]
Recent advancements in Deep Neural Network (DNN) models have significantly improved performance across computer vision tasks.
achieving highly generalizable and high-performing vision models requires expansive datasets, resulting in significant storage requirements.
Recent breakthrough by SeiT proposed the use of Vector-Quantized (VQ) feature vectors (i.e., tokens) as network inputs for vision classification.
In this paper, we extend SeiT by integrating Masked Token Modeling (MTM) for self-supervised pre-training.
arXiv Detail & Related papers (2023-12-15T04:11:34Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
Implicit models such as Deep Equilibrium Models (DEQs) have garnered significant attention in the community for their ability to train infinite layer models.
We revisit the line of implicit models and trace them back to the original weight-tied models.
Surprisingly, we observe that weight-tied models are more effective, stable, as well as efficient on vision tasks, compared to the DEQ variants.
arXiv Detail & Related papers (2023-07-16T11:45:35Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.