Deep Fusion: Capturing Dependencies in Contrastive Learning via Transformer Projection Heads
- URL: http://arxiv.org/abs/2403.18681v2
- Date: Mon, 07 Oct 2024 16:25:02 GMT
- Title: Deep Fusion: Capturing Dependencies in Contrastive Learning via Transformer Projection Heads
- Authors: Huanran Li, Daniel Pimentel-Alarcón,
- Abstract summary: Contrastive Learning (CL) has emerged as a powerful method for training feature extraction models using unlabeled data.
Recent studies suggest that incorporating a linear projection head post-backbone significantly enhances model performance.
We introduce a novel application of transformers in the projection head role for contrastive learning, marking the first endeavor of its kind.
- Score: 0.0
- License:
- Abstract: Contrastive Learning (CL) has emerged as a powerful method for training feature extraction models using unlabeled data. Recent studies suggest that incorporating a linear projection head post-backbone significantly enhances model performance. In this work, we investigate the use of a transformer model as a projection head within the CL framework, aiming to exploit the transformer's capacity for capturing long-range dependencies across embeddings to further improve performance. Our key contributions are fourfold: First, we introduce a novel application of transformers in the projection head role for contrastive learning, marking the first endeavor of its kind. Second, our experiments reveal a compelling "Deep Fusion" phenomenon where the attention mechanism progressively captures the correct relational dependencies among samples from the same class in deeper layers. Third, we provide a theoretical framework that explains and supports this "Deep Fusion" behavior. Finally, we demonstrate through experimental results that our model achieves superior performance compared to the existing approach of using a feed-forward layer.
Related papers
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Causal Transformer for Fusion and Pose Estimation in Deep Visual Inertial Odometry [1.2289361708127877]
We propose a causal visual-inertial fusion transformer (VIFT) for pose estimation in deep visual-inertial odometry.
The proposed method is end-to-end trainable and requires only a monocular camera and IMU during inference.
arXiv Detail & Related papers (2024-09-13T12:21:25Z) - Universal Pooling Method of Multi-layer Features from Pretrained Models for Speaker Verification [7.005068872406135]
Recent advancements in automatic speaker verification (ASV) studies have been achieved by leveraging large-scale pretrained networks.
We present a novel approach for exploiting the multilayered nature of pretrained models for ASV.
We show how the proposed interlayer processing aids in maximizing the advantage of utilizing pretrained models.
arXiv Detail & Related papers (2024-09-12T05:55:32Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
arXiv Detail & Related papers (2024-06-17T07:24:38Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - R-Cut: Enhancing Explainability in Vision Transformers with Relationship
Weighted Out and Cut [14.382326829600283]
We introduce two modules: the Relationship Weighted Out" and the Cut" modules.
The Cut" module performs fine-grained feature decomposition, taking into account factors such as position, texture, and color.
We validate our method with extensive qualitative and quantitative experiments on the ImageNet dataset.
arXiv Detail & Related papers (2023-07-18T08:03:51Z) - VS-TransGRU: A Novel Transformer-GRU-based Framework Enhanced by
Visual-Semantic Fusion for Egocentric Action Anticipation [33.41226268323332]
Egocentric action anticipation is a challenging task that aims to make advanced predictions of future actions in the first-person view.
Most existing methods focus on improving the model architecture and loss function based on the visual input and recurrent neural network.
We propose a novel visual-semantic fusion enhanced and Transformer GRU-based action anticipation framework.
arXiv Detail & Related papers (2023-07-08T06:49:54Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
Current deep learning approaches for multimodal fusion rely on bottom-up fusion of high and mid-level latent modality representations.
Models of human perception highlight the importance of top-down fusion, where high-level representations affect the way sensory inputs are perceived.
We propose a neural architecture that captures top-down cross-modal interactions, using a feedback mechanism in the forward pass during network training.
arXiv Detail & Related papers (2022-01-24T17:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.