Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers
- URL: http://arxiv.org/abs/2406.11274v1
- Date: Mon, 17 Jun 2024 07:24:38 GMT
- Title: Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers
- Authors: Qian Chen, Wen Wang, Qinglin Zhang, Siqi Zheng, Shiliang Zhang, Chong Deng, Hai Yu, Jiaqing Liu, Yukun Ma, Chong Zhang,
- Abstract summary: This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
- Score: 56.264673865476986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Transformer architecture has significantly advanced deep learning, particularly in natural language processing, by effectively managing long-range dependencies. However, as the demand for understanding complex relationships grows, refining the Transformer's architecture becomes critical. This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models by enabling direct attention between non-adjacent layers. This method improves the model's ability to capture dependencies between high-level abstract features and low-level details. By facilitating direct attention between these diverse feature levels, our approach overcomes the limitations of current Transformers, which often rely on suboptimal intra-layer attention. Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer, thus enhancing the diversity of multi-head attention without additional computational burden. Extensive experiments demonstrate that our enhanced Transformer model achieves superior performance in language modeling tasks, highlighting the effectiveness of our skip-layer attention mechanism.
Related papers
- Pyramid Hierarchical Transformer for Hyperspectral Image Classification [1.9427851979929982]
We propose a pyramid-based hierarchical transformer (PyFormer)
This innovative approach organizes input data hierarchically into segments, each representing distinct abstraction levels.
Results underscore the superiority of the proposed method over traditional approaches.
arXiv Detail & Related papers (2024-04-23T11:41:19Z) - On the Long Range Abilities of Transformers [69.3021852589771]
We demonstrate that minimal modifications to the transformer architecture can significantly enhance performance on the Long Range Arena benchmark.
We identify that two key principles for long-range tasks are (i.e. incorporating an inductive bias towards smoothness, and (ii.e.) locality.
As we show, integrating these ideas into the attention mechanism improves results with a negligible amount of additional computation and without any additional trainable parameters.
arXiv Detail & Related papers (2023-11-28T09:21:48Z) - XAI for Transformers: Better Explanations through Conservative
Propagation [60.67748036747221]
We show that the gradient in a Transformer reflects the function only locally, and thus fails to reliably identify the contribution of input features to the prediction.
Our proposal can be seen as a proper extension of the well-established LRP method to Transformers.
arXiv Detail & Related papers (2022-02-15T10:47:11Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Evolving Attention with Residual Convolutions [29.305149185821882]
We propose a novel mechanism based on evolving attention to improve the performance of transformers.
The proposed attention mechanism achieves significant performance improvement over various state-of-the-art models for multiple tasks.
arXiv Detail & Related papers (2021-02-20T15:24:06Z) - Applying the Transformer to Character-level Transduction [68.91664610425114]
The transformer has been shown to outperform recurrent neural network-based sequence-to-sequence models in various word-level NLP tasks.
We show that with a large enough batch size, the transformer does indeed outperform recurrent models for character-level tasks.
arXiv Detail & Related papers (2020-05-20T17:25:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.