FPGA-Based Neural Thrust Controller for UAVs
- URL: http://arxiv.org/abs/2403.18703v2
- Date: Thu, 28 Mar 2024 09:44:06 GMT
- Title: FPGA-Based Neural Thrust Controller for UAVs
- Authors: Sharif Azem, David Scheunert, Mengguang Li, Jonas Gehrunger, Kai Cui, Christian Hochberger, Heinz Koeppl,
- Abstract summary: We propose a novel hardware board equipped with an Artix-7 FPGA for a popular open-source micro-UAV platform.
We successfully validate its functionality by implementing an RL-based low-level controller.
- Score: 23.304588982050632
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of unmanned aerial vehicles (UAVs) has improved a variety of fields by providing a versatile, cost-effective and accessible platform for implementing state-of-the-art algorithms. To accomplish a broader range of tasks, there is a growing need for enhanced on-board computing to cope with increasing complexity and dynamic environmental conditions. Recent advances have seen the application of Deep Neural Networks (DNNs), particularly in combination with Reinforcement Learning (RL), to improve the adaptability and performance of UAVs, especially in unknown environments. However, the computational requirements of DNNs pose a challenge to the limited computing resources available on many UAVs. This work explores the use of Field Programmable Gate Arrays (FPGAs) as a viable solution to this challenge, offering flexibility, high performance, energy and time efficiency. We propose a novel hardware board equipped with an Artix-7 FPGA for a popular open-source micro-UAV platform. We successfully validate its functionality by implementing an RL-based low-level controller using real-world experiments.
Related papers
- DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.
Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Efficient Edge AI: Deploying Convolutional Neural Networks on FPGA with the Gemmini Accelerator [0.5714074111744111]
We present and end-to-end workflow for deployment of CNNs on Field Programmable Gate Arrays (FPGAs) using the Gemmini accelerator.
We were able to achieve real-time performance by deploying a YOLOv7 model on a Xilinx ZCU102 FPGA with an energy efficiency of 36.5 GOP/s/W.
arXiv Detail & Related papers (2024-08-14T09:24:00Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
Unmanned Aerial Vehicles (UAVs) have attracted the attention of researchers in academia and industry for providing wireless services to ground users.
limited resources of UAVs can pose challenges for adopting UAVs for such applications.
Our system model considers a UAV swarm that navigates an area, providing wireless communication to ground users with RIS support to improve the coverage of the UAVs.
arXiv Detail & Related papers (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data
Reshaping for Online Adaptation or Personalization [11.44696439060875]
EF-Train is an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel.
It can achieve end-to-end training on resource-limited low-power edge-level FPGAs.
Our design achieves 46.99 GFLOPS and 6.09GFLOPS/W in terms of throughput and energy efficiency.
arXiv Detail & Related papers (2022-02-18T18:27:42Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
We present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board.
We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions.
We introduce an online solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs.
arXiv Detail & Related papers (2021-07-09T19:47:02Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.