DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users
- URL: http://arxiv.org/abs/2502.01278v1
- Date: Mon, 03 Feb 2025 11:50:43 GMT
- Title: DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users
- Authors: Nancy Nayak, Kin K. Leung, Lajos Hanzo,
- Abstract summary: We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.
Our simulation results show that the proposed method can support data rates very close to the best possible values.
- Score: 52.9870460238443
- License:
- Abstract: With the emergence of AI technologies in next-generation communication systems, machine learning plays a pivotal role due to its ability to address high-dimensional, non-stationary optimization problems within dynamic environments while maintaining computational efficiency. One such application is directional beamforming, achieved through learning-based blind beamforming techniques that utilize already existing radio frequency (RF) fingerprints of the user equipment obtained from the base stations and eliminate the need for additional hardware or channel and angle estimations. However, as the number of users and antenna dimensions increase, thereby expanding the problem's complexity, the learning process becomes increasingly challenging, and the performance of the learning-based method cannot match that of the optimal solution. In such a scenario, we propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array that can change its beam pattern to accommodate mobile users. Our simulation results show that the proposed method can support data rates very close to the best possible values.
Related papers
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.
This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
6th generation (6G) mobile networks bring new challenges in supporting high-mobility communications.
We present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model.
Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS)
arXiv Detail & Related papers (2024-10-28T13:04:23Z) - Near-field Beam training for Extremely Large-scale MIMO Based on Deep Learning [20.67122533341949]
We propose a near-field beam training method based on deep learning.
We use a convolutional neural network (CNN) to efficiently learn channel characteristics from historical data.
The proposed scheme achieves a more stable beamforming gain and significantly improves performance compared to the traditional beam training method.
arXiv Detail & Related papers (2024-06-05T13:26:25Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.