SAT-NGP : Unleashing Neural Graphics Primitives for Fast Relightable Transient-Free 3D reconstruction from Satellite Imagery
- URL: http://arxiv.org/abs/2403.18711v1
- Date: Wed, 27 Mar 2024 15:58:25 GMT
- Title: SAT-NGP : Unleashing Neural Graphics Primitives for Fast Relightable Transient-Free 3D reconstruction from Satellite Imagery
- Authors: Camille Billouard, Dawa Derksen, Emmanuelle Sarrazin, Bruno Vallet,
- Abstract summary: Current stereo-vision pipelines produce high accuracy 3D reconstruction when using multiple pairs or triplets of satellite images.
We propose to use an efficient sampling strategy and multi-resolution hash encoding to accelerate the learning.
Our model, Satellite Neural Graphics Primitives (SAT-NGP) decreases the learning time to 15 minutes while maintaining the quality of the 3D reconstruction.
- Score: 3.520702955309002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current stereo-vision pipelines produce high accuracy 3D reconstruction when using multiple pairs or triplets of satellite images. However, these pipelines are sensitive to the changes between images that can occur as a result of multi-date acquisitions. Such variations are mainly due to variable shadows, reflexions and transient objects (cars, vegetation). To take such changes into account, Neural Radiance Fields (NeRF) have recently been applied to multi-date satellite imagery. However, Neural methods are very compute-intensive, taking dozens of hours to learn, compared with minutes for standard stereo-vision pipelines. Following the ideas of Instant Neural Graphics Primitives we propose to use an efficient sampling strategy and multi-resolution hash encoding to accelerate the learning. Our model, Satellite Neural Graphics Primitives (SAT-NGP) decreases the learning time to 15 minutes while maintaining the quality of the 3D reconstruction.
Related papers
- Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections [25.154665328053333]
We introduce Splatfacto-W, an in-trivial approach that integrates per-Gaussian neural color features and per-image appearance embeddings into an rendering process.
Our method improves the Peak Signal-to-Noise Ratio (PSNR) by an average of 5.3 dB compared to 3DGS, enhances training speed by 150 times compared to NeRF-based methods, and achieves a similar rendering speed to 3DGS.
arXiv Detail & Related papers (2024-07-17T04:02:54Z) - Splatter Image: Ultra-Fast Single-View 3D Reconstruction [67.96212093828179]
Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images.
We learn a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS.
On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works.
arXiv Detail & Related papers (2023-12-20T16:14:58Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - Multi-View Mesh Reconstruction with Neural Deferred Shading [0.8514420632209809]
State-of-the-art methods use both neural surface representations and neural shading.
We represent surfaces as triangle meshes and build a differentiable rendering pipeline around triangle rendering and neural shading.
We evaluate our runtime on a public 3D reconstruction dataset and show that it can match the reconstruction accuracy of traditional baselines while surpassing them in optimization.
arXiv Detail & Related papers (2022-12-08T16:29:46Z) - Efficient data-driven gap filling of satellite image time series using
deep neural networks with partial convolutions [0.0]
This paper shows how three-dimensional partial convolutions can be used as layers in neural networks to fill gaps in satellite image time series.
To evaluate the approach we apply a U-Net-like model on incomplete time series of quasi-global carbon monoxide observations from the Sentinel-5P satellite.
arXiv Detail & Related papers (2022-08-18T11:32:04Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - Neural Lumigraph Rendering [33.676795978166375]
State-of-the-art (SOTA) neural volume rendering approaches are slow to train and require minutes of inference (i.e., rendering) time for high image resolutions.
We adopt high-capacity neural scene representations with periodic activations for jointly optimizing an implicit surface and a radiance field of a scene supervised exclusively with posed 2D images.
Our neural rendering pipeline accelerates SOTA neural volume rendering by about two orders of magnitude and our implicit surface representation is unique in allowing us to export a mesh with view-dependent texture information.
arXiv Detail & Related papers (2021-03-22T03:46:05Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.