論文の概要: Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback
- arxiv url: http://arxiv.org/abs/2403.18768v1
- Date: Wed, 27 Mar 2024 17:06:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 15:59:48.017341
- Title: Efficient Generation of Multi-partite Entanglement between Non-local Superconducting Qubits using Classical Feedback
- Title(参考訳): 古典フィードバックを用いた非局所超伝導量子ビット間の多粒子絡み合わせの効率的な生成
- Authors: Akel Hashim, Ming Yuan, Pranav Gokhale, Larry Chen, Christian Juenger, Neelay Fruitwala, Yilun Xu, Gang Huang, Liang Jiang, Irfan Siddiqi,
- Abstract要約: ゲートベースの量子コンピューティングでは、絡み合った状態の生成や量子プロセッサ間の絡み合いの分布は、絡み合った量子ビットの数で増加する回路深さを必要とすることが多い。
テレポーテーションベースの量子コンピューティングでは、量子ビット数で一定となる回路深さの絡み合った状態を決定論的に生成することができる。
- 参考スコア(独自算出の注目度): 14.740159711831723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement is one of the primary features which distinguishes quantum computers from classical computers. In gate-based quantum computing, the creation of entangled states or the distribution of entanglement across a quantum processor often requires circuit depths which grow with the number of entangled qubits. However, in teleportation-based quantum computing, one can deterministically generate entangled states with a circuit depth that is constant in the number of qubits, provided that one has access to an entangled resource state, the ability to perform mid-circuit measurements, and can rapidly transmit classical information. In this work, aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we explore the utility of teleportation-based protocols for generating non-local, multi-partite entanglement between superconducting qubits. First, we demonstrate well-known protocols for generating Greenberger-Horne-Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in constant depth between three non-local qubits. Finally, we demonstrate deterministic state teleportation and entanglement swapping between qubits on opposite side of our quantum processor.
- Abstract(参考訳): 量子絡み合いは、量子コンピュータと古典的コンピュータを区別する主要な特徴の1つである。
ゲートベースの量子コンピューティングでは、絡み合った状態の生成や量子プロセッサ間の絡み合いの分布は、絡み合った量子ビットの数で増加する回路深さを必要とすることが多い。
しかし、テレポーテーションベースの量子コンピューティングでは、量子ビット数で一定となる回路深さの絡み合った状態を決定論的に生成することができる。
本研究は,150 nsのフィードバックレイテンシを持つ高速なFPGAベースの制御ハードウェアによって支援され,超伝導量子ビット間の非局所多部絡みを発生させるテレポーテーションベースのプロトコルの有用性について検討する。
まずグリーンバーガー・ホーネ・ザイリンガー状態(GHZ)と非局所CNOTゲートを一定深さで生成するためのよく知られたプロトコルを示す。
次に、3つの非局所量子ビット間の一定深さで非有界ファンアウト(すなわち制御NOT-NOT)ゲートを実装するために両方のプロトコルを利用する。
最後に、量子プロセッサの反対側の量子ビット間の決定論的状態テレポーテーションと絡み合いスワップを実証する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Scaling quantum computing with dynamic circuits [0.6990493129893112]
量子コンピュータは、量子力学の法則で情報を処理している。
現在の量子ハードウェアはノイズが多く、短時間しか情報を保存できず、量子ビット(qubits)と呼ばれる数ビットに制限されている。
ここでは、これらの制限を、最大142量子ビットの周期接続を必要とする量子状態を生成するために、エラー軽減された動的回路と回路切断で克服する。
論文 参考訳(メタデータ) (2024-02-27T19:00:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Universal Quantum Computing with Field-Mediated Unruh--DeWitt Qubits [0.0]
普遍的な量子ゲートの集合は、量子コンピューティング理論の重要な部分である。
UDW検出器は単純な設定で、普遍量子コンピューティングを提供するために知られているゲートの集合を可能にする。
論文 参考訳(メタデータ) (2024-02-15T18:19:45Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Demonstration of teleportation across a quantum network code [0.0]
量子ネットワークにおける重要なゴールは、量子情報の転送と通信のためのリソース要求を減らすことである。
量子ネットワーク符号化は、通常競合を示すネットワークに絡み合った状態を分散することで、このような方法を示す。
本稿では,特にノイズの多い中間規模量子デバイスに適したプロトコルであるMQNCについて検討する。
論文 参考訳(メタデータ) (2022-10-06T12:59:48Z) - Native Conditional $i$SWAP Operation with Superconducting Artificial
Atoms [14.279979630349288]
量子状態を処理するコヒーレントデバイスは、情報を符号化する量子状態をルーティングする必要がある。
本稿では,超伝導量子プロセッサを用いた最小量子トランジスタを実験的に実証する。
このアーキテクチャは超伝導量子ビットを用いた量子情報処理に強い可能性を持っている。
論文 参考訳(メタデータ) (2022-03-18T08:16:51Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
量子プロセッサは動的で非局所的な接続を持ち、絡み合った量子ビットは高い並列性でコヒーレントに輸送されることを示す。
このアーキテクチャを用いて,クラスタ状態や7キュービットのSteane符号状態などの絡み合ったグラフ状態のプログラム生成を実現する。
論文 参考訳(メタデータ) (2021-12-07T19:00:00Z) - Deterministic one-way logic gates on a cloud quantum computer [1.4615254965614237]
片道量子コンピューティングは、フォールトトレラント量子コンピューティングの有望な候補である。
本稿では,量子計算プラットフォーム上での一方向CNOTゲートと一方向X$ローテーションを実現するための新しいプロトコルを提案する。
論文 参考訳(メタデータ) (2021-08-09T08:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。