Properties and Applications of the Kirkwood-Dirac Distribution
- URL: http://arxiv.org/abs/2403.18899v1
- Date: Wed, 27 Mar 2024 18:00:02 GMT
- Title: Properties and Applications of the Kirkwood-Dirac Distribution
- Authors: David R. M. Arvidsson-Shukur, William F. Braasch Jr., Stephan De Bievre, Justin Dressel, Andrew N. Jordan, Christopher Langrenez, Matteo Lostaglio, Jeff S. Lundeen, Nicole Yunger Halpern,
- Abstract summary: The KD distribution is a powerful quasi-probability distribution for analysing quantum mechanics.
It can represent a quantum state in terms of arbitrary observables.
This paper reviews the KD distribution, in three parts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most famous quasi-probability distribution, the Wigner function, has played a pivotal role in the development of a continuous-variable quantum theory that has clear analogues of position and momentum. However, the Wigner function is ill-suited for much modern quantum-information research, which is focused on finite-dimensional systems and general observables. Instead, recent years have seen the Kirkwood-Dirac (KD) distribution come to the forefront as a powerful quasi-probability distribution for analysing quantum mechanics. The KD distribution allows tools from statistics and probability theory to be applied to problems in quantum-information processing. A notable difference to the Wigner function is that the KD distribution can represent a quantum state in terms of arbitrary observables. This paper reviews the KD distribution, in three parts. First, we present definitions and basic properties of the KD distribution and its generalisations. Second, we summarise the KD distribution's extensive usage in the study or development of measurement disturbance; quantum metrology; weak values; direct measurements of quantum states; quantum thermodynamics; quantum scrambling and out-of-time-ordered correlators; and the foundations of quantum mechanics, including Leggett-Garg inequalities, the consistent-histories interpretation, and contextuality. We emphasise connections between operational quantum advantages and negative or non-real KD quasi-probabilities. Third, we delve into the KD distribution's mathematical structure. We summarise the current knowledge regarding the geometry of KD-positive states (the states for which the KD distribution is a classical probability distribution), describe how to witness and quantify KD non-positivity, and outline relationships between KD non-positivity and observables' incompatibility.
Related papers
- Convex roofs witnessing Kirkwood-Dirac nonpositivity [0.0]
We construct two witnesses for KD nonpositivity for general mixed states.
Our first witness is the convex roof of the support uncertainty.
Our other witness is the convex roof of the total KD nonpositivity.
arXiv Detail & Related papers (2024-07-05T14:47:32Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Quantifying quantum coherence via nonreal Kirkwood-Dirac
quasiprobability [0.0]
Kirkwood-Dirac (KD) quasiprobability is a quantum analog of phase space probability of classical statistical mechanics.
Recent works have revealed the important roles played by the KD quasiprobability in the broad fields of quantum science and quantum technology.
arXiv Detail & Related papers (2023-09-17T04:34:57Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum circuits for measuring weak values, Kirkwood--Dirac
quasiprobability distributions, and state spectra [0.0]
We propose simple quantum circuits to measure weak values, KD distributions, and spectra of density matrices without the need for post-selection.
An upshot is a unified view of nonclassicality in all those tasks.
arXiv Detail & Related papers (2023-02-01T19:01:25Z) - Kirkwood-Dirac classical pure states [0.32634122554914]
A quantum state is called KD classical if its KD distribution is a probability distribution.
We provide some characterizations for the general structure of KD classical pure states.
arXiv Detail & Related papers (2022-10-06T12:58:33Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Conditions tighter than noncommutation needed for nonclassicality [0.0]
The Kirkwood-Dirac (KD) distribution has been employed to study nonclassicality across quantum physics.
This work resolves long-standing questions about nonclassicality and may be used to engineer quantum advantages.
arXiv Detail & Related papers (2020-09-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.