Light-shift induced behaviors observed in momentum-space quantum walks
- URL: http://arxiv.org/abs/2205.07732v2
- Date: Mon, 26 Sep 2022 11:26:26 GMT
- Title: Light-shift induced behaviors observed in momentum-space quantum walks
- Authors: Nikolai Bolik, Caspar Groiseau, Jerry H. Clark, Alexander Gresch,
Siamak Dadras, Gil S. Summy, Yingmei Liu, and Sandro Wimberger
- Abstract summary: We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
- Score: 47.187609203210705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decade there have been many advances in studies of quantum
walks (QWs) including a momentum-space QW recently realized in our spinor
Bose-Einstein condensate system. This QW possessed behaviors that generally
agreed with theoretical predictions; however, it also showed momentum
distributions that were not adequately explained by the theory. We present a
theoretical model which proves that the coherent dynamics of the spinor
condensate is sufficient to explain the experimental data without invoking the
presence of a thermal cloud of atoms as in the original theory. Our numerical
findings are supported by an analytical prediction for the momentum
distributions in the limit of zero-temperature condensates. This current model
provides more complete explanations to the momentum-space QWs that can be
applied to study quantum search algorithms and topological phases in
Floquet-driven systems.
Related papers
- Exact Solution for A Real Polaritonic System Under Vibrational Strong
Coupling in Thermodynamic Equilibrium: Absence of Zero Temperature and Loss
of Light-Matter Entanglement [0.0]
First exact quantum simulation of a real molecular system (HD$+$) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented.
arXiv Detail & Related papers (2022-08-02T09:21:52Z) - Achieving the quantum field theory limit in far-from-equilibrium quantum
link models [0.0]
A fundamental question regarding quantum link model regularizations of lattice gauge theories is how faithfully they capture the quantum field theory limit of gauge theories.
Here, we show that the approach to this limit also lends itself to the far-from-equilibrium dynamics of lattice gauge theories.
Our results further affirm that state-of-the-art finite-size ultracold-atom and NISQ-device implementations of quantum link lattice gauge theories have the real potential to simulate their quantum field theory limit even in the far-from-equilibrium regime.
arXiv Detail & Related papers (2021-12-08T19:00:00Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Adiabatic Dynamics and Shortcuts to Adiabaticity: Fundamentals and
Applications [0.0]
This thesis is presented a set of results in adiabatic dynamics (closed and open system) and transitionless quantum driving.
A number of theoretical applications are studied, where some theoretical prediction presented in this thesis are experimentally verified.
arXiv Detail & Related papers (2021-07-25T13:16:17Z) - Quantum phase transition dynamics in the two-dimensional
transverse-field Ising model [0.0]
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior near the quantum phase transitions (QPTs)
We study the dynamical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical methods.
We also note that, upon traversing further into the ferromagnetic regime, deviations from the QKZM prediction appear.
arXiv Detail & Related papers (2021-06-16T18:00:04Z) - Quantum simulation of non-equilibrium dynamics and thermalization in the
Schwinger model [0.0]
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers.
We consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment.
arXiv Detail & Related papers (2021-06-15T19:48:05Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.