論文の概要: CPR: Retrieval Augmented Generation for Copyright Protection
- arxiv url: http://arxiv.org/abs/2403.18920v1
- Date: Wed, 27 Mar 2024 18:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 18:11:43.949404
- Title: CPR: Retrieval Augmented Generation for Copyright Protection
- Title(参考訳): CPR: 著作権保護のための検索拡張ジェネレーション
- Authors: Aditya Golatkar, Alessandro Achille, Luca Zancato, Yu-Xiang Wang, Ashwin Swaminathan, Stefano Soatto,
- Abstract要約: 本稿では,著作権保護の強いRAGの新しい手法であるRetrieval(CPR)を用いたCopyProtected生成について紹介する。
CPRは、取得した画像のセットに拡散モデルの出力を条件付けることができる。
CPRは、攻撃者が生成した画像から抽出できる可能性のある情報の量を制限するNear Access Freeness (NAF) を満たすことを証明している。
- 参考スコア(独自算出の注目度): 101.15323302062562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) is emerging as a flexible and robust technique to adapt models to private users data without training, to handle credit attribution, and to allow efficient machine unlearning at scale. However, RAG techniques for image generation may lead to parts of the retrieved samples being copied in the model's output. To reduce risks of leaking private information contained in the retrieved set, we introduce Copy-Protected generation with Retrieval (CPR), a new method for RAG with strong copyright protection guarantees in a mixed-private setting for diffusion models.CPR allows to condition the output of diffusion models on a set of retrieved images, while also guaranteeing that unique identifiable information about those example is not exposed in the generated outputs. In particular, it does so by sampling from a mixture of public (safe) distribution and private (user) distribution by merging their diffusion scores at inference. We prove that CPR satisfies Near Access Freeness (NAF) which bounds the amount of information an attacker may be able to extract from the generated images. We provide two algorithms for copyright protection, CPR-KL and CPR-Choose. Unlike previously proposed rejection-sampling-based NAF methods, our methods enable efficient copyright-protected sampling with a single run of backward diffusion. We show that our method can be applied to any pre-trained conditional diffusion model, such as Stable Diffusion or unCLIP. In particular, we empirically show that applying CPR on top of unCLIP improves quality and text-to-image alignment of the generated results (81.4 to 83.17 on TIFA benchmark), while enabling credit attribution, copy-right protection, and deterministic, constant time, unlearning.
- Abstract(参考訳): Retrieval Augmented Generation(RAG)は、トレーニングなしでプライベートユーザデータにモデルを適応し、クレジット属性を処理し、大規模に効率的なマシンアンラーニングを可能にする、フレキシブルで堅牢なテクニックとして登場している。
しかし、画像生成のためのRAG技術は、取得したサンプルの一部がモデルの出力にコピーされる可能性がある。
CPRは,検索した画像の集合に拡散モデルの出力を条件付けるとともに,そのサンプルに関するユニークな識別情報が出力された出力に露出しないことを保証しながら,拡散モデルの混合プライベート設定において,強力な著作権保護保証を有するRAGの新しい手法である。
特に、パブリックな(安全な)分布とプライベートな(ユーザ)分布の混合から、推論時に拡散スコアをマージしてサンプリングする。
CPRは、攻撃者が生成した画像から抽出できる可能性のある情報の量を制限するNear Access Freeness (NAF) を満たすことを証明している。
我々は著作権保護のための2つのアルゴリズム、CPR-KLとCPR-Chooseを提供する。
従来提案された拒絶サンプリングに基づくNAF法とは異なり,本手法は単一の後方拡散による効率的な著作権保護サンプリングを可能にする。
本手法は, 安定拡散やunCLIPなど, 事前学習した条件付き拡散モデルに適用可能であることを示す。
特に,UnCLIP上にCPRを適用することで,生成した結果の品質とテキスト間のアライメント(TIFAベンチマークでは81.4~83.17)が向上すると同時に,クレジット属性,コピー右保護,決定論的,定時的,未学習が可能であることを実証的に示す。
関連論文リスト
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model [42.77851688874563]
テキスト・画像拡散モデルのための強化学習に基づく著作権保護(RLCP)手法を提案する。
提案手法は,モデル生成データセットの品質を維持しつつ,著作権侵害コンテンツの生成を最小限に抑える。
論文 参考訳(メタデータ) (2024-08-29T15:39:33Z) - Prompt-Agnostic Adversarial Perturbation for Customized Diffusion Models [27.83772742404565]
本稿では,カスタマイズした拡散モデルのためのPAP(Prompt-Agnostic Adversarial Perturbation)手法を提案する。
PAPはまず、ラプラス近似を用いてプロンプト分布をモデル化し、その後、外乱期待を最大化することで、急激な摂動を発生させる。
このアプローチは、即時無敵攻撃に効果的に取り組み、防御安定性を向上させる。
論文 参考訳(メタデータ) (2024-08-20T06:17:56Z) - DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning [38.697798191642136]
我々は,最初の差分プライベート(DP)検索拡張生成アルゴリズムを開発した。
高品質なイメージサンプルを生成すると同時に、証明可能なプライバシ保証を提供することができる。
論文 参考訳(メタデータ) (2024-03-21T14:17:28Z) - Privacy-Preserving Diffusion Model Using Homomorphic Encryption [5.282062491549009]
HE拡散(HE-Diffusion)と呼ばれる同相暗号を利用したプライバシー保護型安定拡散フレームワークを提案する。
本稿では,効率的な部分的画像暗号化を実現するための新しいミン歪み法を提案する。
HEベースのプライバシ保存型安定拡散推論の実装に成功した。
論文 参考訳(メタデータ) (2024-03-09T04:56:57Z) - Breaking Free: How to Hack Safety Guardrails in Black-Box Diffusion Models! [52.0855711767075]
EvoSeedは、フォトリアリスティックな自然対向サンプルを生成するための進化戦略に基づくアルゴリズムフレームワークである。
我々は,CMA-ESを用いて初期種ベクトルの探索を最適化し,条件付き拡散モデルで処理すると,自然逆数サンプルをモデルで誤分類する。
実験の結果, 生成した対向画像は画像品質が高く, 安全分類器を通過させることで有害なコンテンツを生成する懸念が高まっていることがわかった。
論文 参考訳(メタデータ) (2024-02-07T09:39:29Z) - PPIDSG: A Privacy-Preserving Image Distribution Sharing Scheme with GAN
in Federated Learning [2.0507547735926424]
分散学習(FL)は、分散クライアントでのプライバシー保護のための協調トレーニングを可能にするため、注目を集めている。
最近の研究によると、個人データを敵に公開するリスクは依然として残っている。
GAN(PPIDSG)を用いたプライバシー保護型画像配信方式を提案する。
論文 参考訳(メタデータ) (2023-12-16T08:32:29Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。