SMOF: Streaming Modern CNNs on FPGAs with Smart Off-Chip Eviction
- URL: http://arxiv.org/abs/2403.18921v1
- Date: Wed, 27 Mar 2024 18:12:24 GMT
- Title: SMOF: Streaming Modern CNNs on FPGAs with Smart Off-Chip Eviction
- Authors: Petros Toupas, Zhewen Yu, Christos-Savvas Bouganis, Dimitrios Tzovaras,
- Abstract summary: This paper introduces weight and activation eviction mechanisms to off-chip memory along the computational pipeline.
The proposed mechanism is incorporated into an existing toolflow, expanding the design space by utilising off-chip memory as a buffer.
SMOF has demonstrated the capacity to deliver competitive and, in some cases, state-of-the-art performance across a spectrum of computer vision tasks.
- Score: 6.800641017055453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have demonstrated their effectiveness in numerous vision tasks. However, their high processing requirements necessitate efficient hardware acceleration to meet the application's performance targets. In the space of FPGAs, streaming-based dataflow architectures are often adopted by users, as significant performance gains can be achieved through layer-wise pipelining and reduced off-chip memory access by retaining data on-chip. However, modern topologies, such as the UNet, YOLO, and X3D models, utilise long skip connections, requiring significant on-chip storage and thus limiting the performance achieved by such system architectures. The paper addresses the above limitation by introducing weight and activation eviction mechanisms to off-chip memory along the computational pipeline, taking into account the available compute and memory resources. The proposed mechanism is incorporated into an existing toolflow, expanding the design space by utilising off-chip memory as a buffer. This enables the mapping of such modern CNNs to devices with limited on-chip memory, under the streaming architecture design approach. SMOF has demonstrated the capacity to deliver competitive and, in some cases, state-of-the-art performance across a spectrum of computer vision tasks, achieving up to 10.65 X throughput improvement compared to previous works.
Related papers
- H2PIPE: High throughput CNN Inference on FPGAs with High-Bandwidth Memory [1.0056445773367833]
Convolutional Neural Networks (CNNs) combine large amounts of parallelizable computation with frequent memory access.
This work augments a state-of-the-art dataflow accelerator to leverage both High-Bandwidth Memory (HBM) and on-chip storage.
Compared to the best prior work we obtain speed-ups of at least 19.4x, 5.1x and 10.5x on ResNet-18, ResNet-50 and VGG-16 respectively.
arXiv Detail & Related papers (2024-08-17T14:25:32Z) - TrIM: Triangular Input Movement Systolic Array for Convolutional Neural Networks -- Part II: Architecture and Hardware Implementation [0.0]
TrIM is an innovative dataflow based on a triangular movement of inputs.
TrIM can reduce the number of memory accesses by one order of magnitude when compared to state-of-the-art systolic arrays.
architecture achieves a peak throughput of 453.6 Giga Operations per Second.
arXiv Detail & Related papers (2024-08-05T10:18:00Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
Deep neural networks (DNN) have shown superior performance in a variety of tasks.
As they rapidly evolve, their escalating computation and memory demands make it challenging to deploy them on resource-constrained edge devices.
We propose a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations.
arXiv Detail & Related papers (2021-08-25T18:50:24Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - PIM-DRAM:Accelerating Machine Learning Workloads using Processing in
Memory based on DRAM Technology [2.6168147530506958]
We propose a processing-in-memory (PIM) multiplication primitive to accelerate matrix vector operations in ML workloads.
We show that the proposed architecture, mapping, and data flow can provide up to 23x and 6.5x benefits over a GPU.
arXiv Detail & Related papers (2021-05-08T16:39:24Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.