QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation
- URL: http://arxiv.org/abs/2503.06545v1
- Date: Sun, 09 Mar 2025 10:31:51 GMT
- Title: QuantCache: Adaptive Importance-Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation
- Authors: Junyi Wu, Zhiteng Li, Zheng Hui, Yulun Zhang, Linghe Kong, Xiaokang Yang,
- Abstract summary: Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation.<n>DiTs come with significant drawbacks, including increased computational and memory costs.<n>We propose QuantCache, a novel training-free inference acceleration framework.
- Score: 84.91431271257437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Diffusion Transformers (DiTs) have emerged as a dominant architecture in video generation, surpassing U-Net-based models in terms of performance. However, the enhanced capabilities of DiTs come with significant drawbacks, including increased computational and memory costs, which hinder their deployment on resource-constrained devices. Current acceleration techniques, such as quantization and cache mechanism, offer limited speedup and are often applied in isolation, failing to fully address the complexities of DiT architectures. In this paper, we propose QuantCache, a novel training-free inference acceleration framework that jointly optimizes hierarchical latent caching, adaptive importance-guided quantization, and structural redundancy-aware pruning. QuantCache achieves an end-to-end latency speedup of 6.72$\times$ on Open-Sora with minimal loss in generation quality. Extensive experiments across multiple video generation benchmarks demonstrate the effectiveness of our method, setting a new standard for efficient DiT inference. The code and models will be available at https://github.com/JunyiWuCode/QuantCache.
Related papers
- QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
Large Language Models (LLMs) are increasingly being deployed on edge devices for long-context settings.<n>In these scenarios, the Key-Value ( KV) cache is the primary bottleneck in terms of both GPU memory and latency.<n>We propose a novel self-speculative decoding framework, QuantSpec, where the draft model shares the architecture of the target model but employs a hierarchical 4-bit quantized KV cache and 4-bit quantized weights for acceleration.
arXiv Detail & Related papers (2025-02-05T20:43:48Z) - Accelerating Vision Diffusion Transformers with Skip Branches [47.07564477125228]
Diffusion Transformers (DiT) are an emerging image and video generation model architecture.<n>DiT's practical deployment is constrained by computational complexity and redundancy in the sequential denoising process.<n>We introduce Skip-DiT, which converts standard DiT into Skip-DiT with skip branches to enhance feature smoothness.<n>We also introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time.
arXiv Detail & Related papers (2024-11-26T17:28:10Z) - Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing [66.66090399385304]
Ca2-VDM is an efficient autoregressive VDM with Causal generation and Cache sharing.
For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps.
For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost.
arXiv Detail & Related papers (2024-11-25T13:33:41Z) - SmoothCache: A Universal Inference Acceleration Technique for Diffusion Transformers [4.7170474122879575]
Diffusion Transformers (DiT) have emerged as powerful generative models for various tasks, including image, video, and speech synthesis.
We introduce SmoothCache, a model-agnostic inference acceleration technique for DiT architectures.
Our experiments demonstrate that SmoothCache achieves 71% 8% to speed up while maintaining or even improving generation quality across diverse modalities.
arXiv Detail & Related papers (2024-11-15T16:24:02Z) - Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
Diffusion Transformers (DiTs) rely on larger models and heavier attention mechanisms, resulting in slower inference speeds.
We introduce a training-free method to accelerate video DiTs, termed Adaptive Caching (AdaCache)
We also introduce a Motion Regularization (MoReg) scheme to utilize video information within AdaCache, controlling the compute allocation based on motion content.
arXiv Detail & Related papers (2024-11-04T18:59:44Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.
We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design [18.57172631588624]
We propose a Dynamic Deep neural network assisted by a Content-Aware data processing pipeline to reduce the model number down to one.
Our method achieves better PSNR and real-time performance (33 FPS) on an off-the-shelf mobile phone.
arXiv Detail & Related papers (2024-07-03T05:17:26Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.