A Review of Neuroscience-Inspired Machine Learning
- URL: http://arxiv.org/abs/2403.18929v1
- Date: Fri, 16 Feb 2024 18:05:09 GMT
- Title: A Review of Neuroscience-Inspired Machine Learning
- Authors: Alexander Ororbia, Ankur Mali, Adam Kohan, Beren Millidge, Tommaso Salvatori,
- Abstract summary: Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
- Score: 58.72729525961739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One major criticism of deep learning centers around the biological implausibility of the credit assignment schema used for learning -- backpropagation of errors. This implausibility translates into practical limitations, spanning scientific fields, including incompatibility with hardware and non-differentiable implementations, thus leading to expensive energy requirements. In contrast, biologically plausible credit assignment is compatible with practically any learning condition and is energy-efficient. As a result, it accommodates hardware and scientific modeling, e.g. learning with physical systems and non-differentiable behavior. Furthermore, it can lead to the development of real-time, adaptive neuromorphic processing systems. In addressing this problem, an interdisciplinary branch of artificial intelligence research that lies at the intersection of neuroscience, cognitive science, and machine learning has emerged. In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks, discussing the solutions they provide for different scientific fields as well as their advantages on CPUs, GPUs, and novel implementations of neuromorphic hardware. We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective [0.0]
We present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
In this report, we present an overview of a new competing bio-inspired continual learning neural tool Neuronal Auditory Machine Intelligence (Neuro-AMI)
arXiv Detail & Related papers (2023-10-14T13:17:58Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
Recent breakthroughs in computing power have made it feasible to use machine learning and deep learning to advance scientific computing.
Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse.
Neural networks offer a strong foundation to digest physical-driven or knowledge-based constraints.
arXiv Detail & Related papers (2022-11-14T15:44:07Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Off-the-shelf deep learning is not enough: parsimony, Bayes and
causality [0.8602553195689513]
We discuss opportunities and roadblocks to implementation of deep learning within materials science.
We argue that deep learning and AI are now well positioned to revolutionize fields where causal links are known.
arXiv Detail & Related papers (2020-05-04T15:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.