論文の概要: LORD: Large Models based Opposite Reward Design for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2403.18965v1
- Date: Wed, 27 Mar 2024 19:30:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 18:11:43.854731
- Title: LORD: Large Models based Opposite Reward Design for Autonomous Driving
- Title(参考訳): LORD:大規模モデルに基づく自律運転のためのオポジットリワード設計
- Authors: Xin Ye, Feng Tao, Abhirup Mallik, Burhaneddin Yaman, Liu Ren,
- Abstract要約: LORDは、望ましくない言語目標を通じて、対向的な報酬設計に基づく新しい大モデルである。
提案手法は,大規模な事前学習モデルのパワーを有効活用し,安全で高機能な自動運転を実現するための有効性を示す。
- 参考スコア(独自算出の注目度): 11.717821043996352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) based autonomous driving has emerged as a promising alternative to data-driven imitation learning approaches. However, crafting effective reward functions for RL poses challenges due to the complexity of defining and quantifying good driving behaviors across diverse scenarios. Recently, large pretrained models have gained significant attention as zero-shot reward models for tasks specified with desired linguistic goals. However, the desired linguistic goals for autonomous driving such as "drive safely" are ambiguous and incomprehensible by pretrained models. On the other hand, undesired linguistic goals like "collision" are more concrete and tractable. In this work, we introduce LORD, a novel large models based opposite reward design through undesired linguistic goals to enable the efficient use of large pretrained models as zero-shot reward models. Through extensive experiments, our proposed framework shows its efficiency in leveraging the power of large pretrained models for achieving safe and enhanced autonomous driving. Moreover, the proposed approach shows improved generalization capabilities as it outperforms counterpart methods across diverse and challenging driving scenarios.
- Abstract(参考訳): 強化学習(RL)に基づく自律運転は、データ駆動の模倣学習アプローチに代わる有望な代替手段として登場した。
しかし、RLの効果的な報酬関数を作成することは、様々なシナリオで良い運転行動を定義して定量化する複雑さのために課題を提起する。
近年、望まれる言語目標を持つタスクに対するゼロショット報酬モデルとして、大規模な事前訓練モデルが注目されている。
しかし、「運転安全」のような自律運転の言語目標は、事前訓練されたモデルでは曖昧で理解できない。
一方で、"コリジョン"のような望ましくない言語目標の方が具体的で、扱いやすい。
本研究では,ゼロショット報酬モデルとして大規模事前学習モデルの効率的な利用を可能にするために,望ましくない言語目標を通した,新たな大規模報酬モデルであるLORDを紹介する。
提案手法は,大規模な事前学習モデルのパワーを有効活用し,安全かつ高機能な自動運転の実現に有効であることを示す。
さらに,提案手法は,多種多様かつ困難な運転シナリオにまたがる他の手法よりも優れているため,一般化能力の向上を示す。
関連論文リスト
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Beyond One Model Fits All: Ensemble Deep Learning for Autonomous
Vehicles [16.398646583844286]
本研究では,Mediated Perception, Behavior Reflex, Direct Perceptionの3つの異なるニューラルネットワークモデルを紹介する。
我々のアーキテクチャは、グローバルなルーティングコマンドを使用して、ベース、将来の潜伏ベクトル予測、補助タスクネットワークからの情報を融合し、適切なアクションサブネットワークを選択する。
論文 参考訳(メタデータ) (2023-12-10T04:40:02Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Formulation and validation of a car-following model based on deep
reinforcement learning [0.0]
深部強化学習に基づく新車追従モデルの提案と検証を行う。
当社のモデルは, 自由・自動車追従体制において, 外部に与えられた報酬関数を最大化するように訓練されている。
これらの報酬関数のパラメータは、Intelligent Driver Modelのような従来のモデルに類似している。
論文 参考訳(メタデータ) (2021-09-29T08:27:12Z) - Model-based versus Model-free Deep Reinforcement Learning for Autonomous
Racing Cars [46.64253693115981]
本稿では,モデルに基づく深層強化学習エージェントが現実世界の自律車両制御タスクに一般化する方法について検討する。
本稿では,想像力で学習可能なモデルベースエージェント,パフォーマンス,サンプル効率,タスク完了,一般化に関して,モデルフリーエージェントを実質的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-08T17:15:23Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - A Probabilistic Framework for Imitating Human Race Driver Behavior [31.524303667746643]
本稿では,運転行動モデリングのタスクを複数のモジュールに分割するモジュラーフレームワークProMoDを提案する。
確率的運動プリミティブを用いて大域的目標軌道分布を学習し、局所経路生成にウエイドを使用し、ニューラルネットワークにより対応する行動選択を行う。
シミュレーションカーレースセッティングの実験は、他の模倣学習アルゴリズムと比較して、模倣精度とロバスト性にかなりの利点がある。
論文 参考訳(メタデータ) (2020-01-22T20:06:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。