Causal-StoNet: Causal Inference for High-Dimensional Complex Data
- URL: http://arxiv.org/abs/2403.18994v1
- Date: Wed, 27 Mar 2024 20:27:31 GMT
- Title: Causal-StoNet: Causal Inference for High-Dimensional Complex Data
- Authors: Yaxin Fang, Faming Liang,
- Abstract summary: This paper proposes a novel causal inference approach for dealing with high-dimensional complex data.
It is based on deep learning techniques, including sparse deep learning theory and neural networks.
The proposed approach can also be used when missing values are present in the datasets.
- Score: 7.648784748888187
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advancement of data science, the collection of increasingly complex datasets has become commonplace. In such datasets, the data dimension can be extremely high, and the underlying data generation process can be unknown and highly nonlinear. As a result, the task of making causal inference with high-dimensional complex data has become a fundamental problem in many disciplines, such as medicine, econometrics, and social science. However, the existing methods for causal inference are frequently developed under the assumption that the data dimension is low or that the underlying data generation process is linear or approximately linear. To address these challenges, this paper proposes a novel causal inference approach for dealing with high-dimensional complex data. The proposed approach is based on deep learning techniques, including sparse deep learning theory and stochastic neural networks, that have been developed in recent literature. By using these techniques, the proposed approach can address both the high dimensionality and unknown data generation process in a coherent way. Furthermore, the proposed approach can also be used when missing values are present in the datasets. Extensive numerical studies indicate that the proposed approach outperforms existing ones.
Related papers
- Simultaneous Dimensionality Reduction for Extracting Useful Representations of Large Empirical Multimodal Datasets [0.0]
We focus on the sciences of dimensionality reduction as a means to obtain low-dimensional descriptions from high-dimensional data.
We address the challenges posed by real-world data that defy conventional assumptions, such as complex interactions within systems or high-dimensional dynamical systems.
arXiv Detail & Related papers (2024-10-23T21:27:40Z) - A Survey on Data Synthesis and Augmentation for Large Language Models [35.59526251210408]
This paper reviews and summarizes data generation techniques throughout the lifecycle of Large Language Models.
We discuss the current constraints faced by these methods and investigate potential pathways for future development and research.
arXiv Detail & Related papers (2024-10-16T16:12:39Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
Data augmentation is a technique that generates high-quality artificial data by manipulating existing data samples.
Existing literature surveys only focus on a certain type of specific modality data.
We propose a more enlightening taxonomy that encompasses data augmentation techniques for different common data modalities.
arXiv Detail & Related papers (2024-05-15T11:58:08Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
We propose a Time-Series Causal Neural Network (TS-CausalNN) to discover contemporaneous and lagged causal relations simultaneously.
In addition to the simple parallel design, an advantage of the proposed model is that it naturally handles the non-stationarity and non-linearity of the data.
arXiv Detail & Related papers (2024-04-01T20:33:29Z) - A spectrum of physics-informed Gaussian processes for regression in
engineering [0.0]
Despite the growing availability of sensing and data in general, we remain unable to fully characterise many in-service engineering systems and structures from a purely data-driven approach.
This paper pursues the combination of machine learning technology and physics-based reasoning to enhance our ability to make predictive models with limited data.
arXiv Detail & Related papers (2023-09-19T14:39:03Z) - Boosting Synthetic Data Generation with Effective Nonlinear Causal
Discovery [11.81479419498206]
In software testing, data privacy, imbalanced learning, and artificial intelligence explanation, it is crucial to generate plausible data samples.
A common assumption of approaches widely used for data generation is the independence of the features.
We propose a synthetic dataset generator that can discover nonlinear causalities among the variables and use them at generation time.
arXiv Detail & Related papers (2023-01-18T10:54:06Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
dataset distillation (DD) aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset.
This paper gives a comprehensive review and summary of recent advances in DD and its application.
arXiv Detail & Related papers (2023-01-17T17:03:28Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
It has become challenging to handle the unlimited growth of data with limited computing power.
Deep learning technology has developed unprecedentedly in the last decade.
This paper provides a holistic understanding of dataset distillation from multiple aspects.
arXiv Detail & Related papers (2023-01-13T15:11:38Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.