Dataflow-Aware PIM-Enabled Manycore Architecture for Deep Learning Workloads
- URL: http://arxiv.org/abs/2403.19073v1
- Date: Thu, 28 Mar 2024 00:29:15 GMT
- Title: Dataflow-Aware PIM-Enabled Manycore Architecture for Deep Learning Workloads
- Authors: Harsh Sharma, Gaurav Narang, Janardhan Rao Doppa, Umit Ogras, Partha Pratim Pande,
- Abstract summary: Processing-in-memory (PIM) has emerged as an enabler for the energy-efficient and high-performance acceleration of deep learning (DL) workloads.
Resistive random-access memory (ReRAM) is one of the most promising technologies to implement PIM.
Existing PIM-based architectures mostly focus on computation while ignoring the role of communication.
- Score: 16.67441258454545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing-in-memory (PIM) has emerged as an enabler for the energy-efficient and high-performance acceleration of deep learning (DL) workloads. Resistive random-access memory (ReRAM) is one of the most promising technologies to implement PIM. However, as the complexity of Deep convolutional neural networks (DNNs) grows, we need to design a manycore architecture with multiple ReRAM-based processing elements (PEs) on a single chip. Existing PIM-based architectures mostly focus on computation while ignoring the role of communication. ReRAM-based tiled manycore architectures often involve many Processing Elements (PEs), which need to be interconnected via an efficient on-chip communication infrastructure. Simply allocating more resources (ReRAMs) to speed up only computation is ineffective if the communication infrastructure cannot keep up with it. In this paper, we highlight the design principles of a dataflow-aware PIM-enabled manycore platform tailor-made for various types of DL workloads. We consider the design challenges with both 2.5D interposer- and 3D integration-enabled architectures.
Related papers
- AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
We introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks.
AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation.
We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance.
arXiv Detail & Related papers (2024-11-07T18:43:17Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - A Collaborative PIM Computing Optimization Framework for Multi-Tenant DNN [8.688432179052441]
Modern Artificial Intelligence (AI) applications are increasingly utilizing multi-tenant deep neural networks (DNNs)
We propose a novel ReRAM-based in-memory computing framework that enables efficient deployment of multi-tenant DNNs on ReRAM-based PIM designs.
Compared to the direct deployments on traditional ReRAM-based PIM designs, our proposed PIM computing framework achieves significant improvements in speed (ranges from 1.75x to 60.43x) and energy(up to 1.89x)
arXiv Detail & Related papers (2024-08-09T01:46:33Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - UniPT: Universal Parallel Tuning for Transfer Learning with Efficient
Parameter and Memory [69.33445217944029]
PETL is an effective strategy for adapting pre-trained models to downstream domains.
Recent PETL works focus on the more valuable memory-efficient characteristic.
We propose a new memory-efficient PETL strategy, Universal Parallel Tuning (UniPT)
arXiv Detail & Related papers (2023-08-28T05:38:43Z) - An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [9.429605859159023]
Training machine learning (ML) algorithms is a computationally intensive process, which is frequently memory-bound.
Memory-centric computing systems, with processing-in-memory capabilities, can alleviate this data movement bottleneck.
We implement several representative classic ML algorithms on a real-world general-purpose PIM architecture.
arXiv Detail & Related papers (2022-07-16T09:39:53Z) - Trident Pyramid Networks: The importance of processing at the feature
pyramid level for better object detection [50.008529403150206]
We present a new core architecture called Trident Pyramid Network (TPN)
TPN allows for a deeper design and for a better balance between communication-based processing and self-processing.
We show consistent improvements when using our TPN core on the object detection benchmark, outperforming the popular BiFPN baseline by 1.5 AP.
arXiv Detail & Related papers (2021-10-08T09:59:59Z) - Reconfigurable co-processor architecture with limited numerical
precision to accelerate deep convolutional neural networks [0.38848561367220275]
Convolutional Neural Networks (CNNs) are widely used in deep learning applications, e.g. visual systems, robotics etc.
Here, we present a model-independent reconfigurable co-processing architecture to accelerate CNNs.
In contrast to existing solutions, we introduce limited precision 32 bit Q-format fixed point quantization for arithmetic representations and operations.
arXiv Detail & Related papers (2021-08-21T09:50:54Z) - PIM-DRAM:Accelerating Machine Learning Workloads using Processing in
Memory based on DRAM Technology [2.6168147530506958]
We propose a processing-in-memory (PIM) multiplication primitive to accelerate matrix vector operations in ML workloads.
We show that the proposed architecture, mapping, and data flow can provide up to 23x and 6.5x benefits over a GPU.
arXiv Detail & Related papers (2021-05-08T16:39:24Z) - In-memory Implementation of On-chip Trainable and Scalable ANN for AI/ML
Applications [0.0]
This paper presents an in-memory computing architecture for ANN enabling artificial intelligence (AI) and machine learning (ML) applications.
Our novel on-chip training and inference in-memory architecture reduces energy cost and enhances throughput by simultaneously accessing the multiple rows of array per precharge cycle.
The proposed architecture was trained and tested on the IRIS dataset which exhibits $46times$ more energy efficient per MAC (multiply and accumulate) operation compared to earlier classifiers.
arXiv Detail & Related papers (2020-05-19T15:36:39Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.