EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference
- URL: http://arxiv.org/abs/2410.12247v1
- Date: Wed, 16 Oct 2024 05:17:49 GMT
- Title: EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference
- Authors: Yulei Qian, Fengcun Li, Xiangyang Ji, Xiaoyu Zhao, Jianchao Tan, Kefeng Zhang, Xunliang Cai,
- Abstract summary: This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
- Score: 49.94169109038806
- License:
- Abstract: Large Language Model (LLM) has revolutionized the field of artificial intelligence, with their capabilities expanding rapidly due to advances in deep learning and increased computational resources. The mixture-of-experts (MoE) model has emerged as a prominent architecture in the field of LLM, better balancing the model performance and computational efficiency. MoE architecture allows for effective scaling and efficient parallel processing, but the GEMM (General Matrix Multiply) of MoE and the large parameters introduce challenges in terms of computation efficiency and communication overhead, which becomes the throughput bottleneck during inference. Applying a single parallelism strategy like EP, DP, PP, etc. to MoE architecture usually achieves sub-optimal inference throughput, the straightforward combinations of existing different parallelisms on MoE can not obtain optimal inference throughput yet. This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that goes beyond the existing inference parallelism schemes. Our approach focuses on optimizing the computation of MoE FFN (FeedForward Network) modules by dynamically selecting the best kernel implementation of GroupGemm and DenseGemm for different loads and adaptively overlapping these computations with \textit{all2all} communication, leading to a substantial increase in throughput. Our experimental results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods. Specifically, we validated our method on DeepSeekV2, a highly optimized model claimed to achieve a prefill throughput of 100K tokens per second. By applying EPS-MoE, we further accelerated it to at least 120K tokens per second.
Related papers
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
We propose a novel framework Read-ME that transforms pre-trained dense LLMs into smaller MoE models.
Our approach employs activation sparsity to extract experts.
Read-ME outperforms other popular open-source dense models of similar scales.
arXiv Detail & Related papers (2024-10-24T19:48:51Z) - Duo-LLM: A Framework for Studying Adaptive Computation in Large Language Models [16.16372459671255]
Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget.
We propose a novel framework that integrates smaller auxiliary modules within each Feed-Forward Network layer of the LLM.
We show that trained routers operate differently from oracles and often yield suboptimal solutions.
arXiv Detail & Related papers (2024-10-01T16:10:21Z) - Layerwise Recurrent Router for Mixture-of-Experts [42.36093735411238]
Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs.
Current MoE models often display parameter inefficiency.
We introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE)
arXiv Detail & Related papers (2024-08-13T10:25:13Z) - Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules [15.680276212483292]
We propose Parm, a system that accelerates MP+EP+ESP training by designing two dedicated schedules for placing communication tasks.
Parm achieves 1.13$times$ to 5.77$times$ speedup on 1296 manually configured MoE layers and approximately 3$times$ improvement on two real-world MoE models.
arXiv Detail & Related papers (2024-06-30T05:55:11Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - Shortcut-connected Expert Parallelism for Accelerating Mixture-of-Experts [4.629608387540524]
We present a novel shortcut-connected MoE (ScMoE) architecture with an overlapping parallel strategy.
ScMoE allows for a substantial overlap of 70% to 100% with computation.
Building on the ScMoE architecture, we further implement an expert offloading strategy to facilitate memory-limited inference.
arXiv Detail & Related papers (2024-04-07T17:17:23Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism [91.9372563527801]
Existing MoE models suffer from tremendous inner-node and inter-node communication overhead.
We propose a novel MoE architecture called Pipeline MoE (PPMoE) to tackle them.
PPMoE builds expert parallel incorporating with tensor parallel and replaces communication-intensive all-to-all dispatching and gathering.
arXiv Detail & Related papers (2023-04-22T14:09:14Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Tutel: Adaptive Mixture-of-Experts at Scale [20.036168971435306]
Sparsely-gated mixture-of-experts (MoE) has been widely adopted to scale deep learning models to trillion-plus parameters with fixed computational cost.
We present Flex, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining.
Our evaluation shows that Flex efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture.
arXiv Detail & Related papers (2022-06-07T15:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.