Task2Morph: Differentiable Task-inspired Framework for Contact-Aware Robot Design
- URL: http://arxiv.org/abs/2403.19093v1
- Date: Thu, 28 Mar 2024 02:02:00 GMT
- Title: Task2Morph: Differentiable Task-inspired Framework for Contact-Aware Robot Design
- Authors: Yishuai Cai, Shaowu Yang, Minglong Li, Xinglin Chen, Yunxin Mao, Xiaodong Yi, Wenjing Yang,
- Abstract summary: This paper proposes a novel differentiable task-inspired framework for contact-aware robot design called Task2Morph.
We embed the mapping into a differentiable robot design process, where the gradient information is leveraged for both the mapping learning and the whole optimization.
The experiments are conducted on three scenarios, and the results validate that Task2Morph outperforms DiffHand, which lacks a task-inspired morphology module, in terms of efficiency and effectiveness.
- Score: 5.4795537587182475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing the morphologies and the controllers that adapt to various tasks is a critical issue in the field of robot design, aka. embodied intelligence. Previous works typically model it as a joint optimization problem and use search-based methods to find the optimal solution in the morphology space. However, they ignore the implicit knowledge of task-to-morphology mapping which can directly inspire robot design. For example, flipping heavier boxes tends to require more muscular robot arms. This paper proposes a novel and general differentiable task-inspired framework for contact-aware robot design called Task2Morph. We abstract task features highly related to task performance and use them to build a task-to-morphology mapping. Further, we embed the mapping into a differentiable robot design process, where the gradient information is leveraged for both the mapping learning and the whole optimization. The experiments are conducted on three scenarios, and the results validate that Task2Morph outperforms DiffHand, which lacks a task-inspired morphology module, in terms of efficiency and effectiveness.
Related papers
- The Ingredients for Robotic Diffusion Transformers [47.61690903645525]
We identify, study and improve key architectural design decisions for high-capacity diffusion transformer policies.
The resulting models can efficiently solve diverse tasks on multiple robot embodiments.
We find that our policies show improved scaling performance when trained on 10 hours of highly multi-modal, language annotated ALOHA demonstration data.
arXiv Detail & Related papers (2024-10-14T02:02:54Z) - RoboMorph: Evolving Robot Morphology using Large Language Models [0.5812095716568273]
We introduce RoboMorph, an automated approach for generating and optimizing modular robot designs.
By integrating automatic prompt design and a reinforcement learning based control algorithm, RoboMorph iteratively improves robot designs through feedback loops.
arXiv Detail & Related papers (2024-07-11T16:05:56Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Optimizing Modular Robot Composition: A Lexicographic Genetic Algorithm
Approach [9.471665570104802]
The morphology, i.e., the form and structure of a robot, significantly impacts the primary performance metrics acquisition cost, cycle time, and energy efficiency.
Previous approaches either lack adequate exploration of the design space or the possibility to adapt to complex tasks.
We propose combining a genetic algorithm with a lexicographic evaluation of solution candidates to overcome this problem.
arXiv Detail & Related papers (2023-09-15T13:50:21Z) - SoftZoo: A Soft Robot Co-design Benchmark For Locomotion In Diverse
Environments [111.91255476270526]
We introduce SoftZoo, a soft robot co-design platform for locomotion in diverse environments.
SoftZoo supports an extensive, naturally-inspired material set, including the ability to simulate environments such as flat ground, desert, wetland, clay, ice, snow, shallow water, and ocean.
It provides a variety of tasks relevant for soft robotics, including fast locomotion, agile turning, and path following, as well as differentiable design representations for morphology and control.
arXiv Detail & Related papers (2023-03-16T17:59:50Z) - Learning Tool Morphology for Contact-Rich Manipulation Tasks with
Differentiable Simulation [27.462052737553055]
We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators.
In our approach, we instead only need to define the objective with respect to the task performance and enable learning a robust morphology by randomizing the task variations.
We demonstrate the effectiveness of our method for designing new tools in several scenarios such as winding ropes, flipping a box and pushing peas onto a scoop in simulation.
arXiv Detail & Related papers (2022-11-04T00:57:36Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Task-Agnostic Morphology Evolution [94.97384298872286]
Current approaches that co-adapt morphology and behavior use a specific task's reward as a signal for morphology optimization.
This often requires expensive policy optimization and results in task-dependent morphologies that are not built to generalize.
We propose a new approach, Task-Agnostic Morphology Evolution (TAME), to alleviate both of these issues.
arXiv Detail & Related papers (2021-02-25T18:59:21Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
We present a deep learning network that learns dependencies and transitions across subtasks solely from a set of demonstration videos.
We show that these symbols can be learned and predicted directly from image observations.
We evaluate our framework on two long horizon tasks: (1) block stacking of puzzle pieces being executed by humans, and (2) a robot manipulation task involving pick and place of objects and sliding a cabinet door with a 7-DoF robot arm.
arXiv Detail & Related papers (2020-06-08T18:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.