Learning Tool Morphology for Contact-Rich Manipulation Tasks with
Differentiable Simulation
- URL: http://arxiv.org/abs/2211.02201v1
- Date: Fri, 4 Nov 2022 00:57:36 GMT
- Title: Learning Tool Morphology for Contact-Rich Manipulation Tasks with
Differentiable Simulation
- Authors: Mengxi Li, Rika Antonova, Dorsa Sadigh, Jeannette Bohg
- Abstract summary: We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators.
In our approach, we instead only need to define the objective with respect to the task performance and enable learning a robust morphology by randomizing the task variations.
We demonstrate the effectiveness of our method for designing new tools in several scenarios such as winding ropes, flipping a box and pushing peas onto a scoop in simulation.
- Score: 27.462052737553055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When humans perform contact-rich manipulation tasks, customized tools are
often necessary and play an important role in simplifying the task. For
instance, in our daily life, we use various utensils for handling food, such as
knives, forks and spoons. Similarly, customized tools for robots may enable
them to more easily perform a variety of tasks. Here, we present an end-to-end
framework to automatically learn tool morphology for contact-rich manipulation
tasks by leveraging differentiable physics simulators. Previous work approached
this problem by introducing manually constructed priors that required detailed
specification of object 3D model, grasp pose and task description to facilitate
the search or optimization. In our approach, we instead only need to define the
objective with respect to the task performance and enable learning a robust
morphology by randomizing the task variations. The optimization is made
tractable by casting this as a continual learning problem. We demonstrate the
effectiveness of our method for designing new tools in several scenarios such
as winding ropes, flipping a box and pushing peas onto a scoop in simulation.
We also validate that the shapes discovered by our method help real robots
succeed in these scenarios.
Related papers
- Learning Reusable Manipulation Strategies [86.07442931141634]
Humans demonstrate an impressive ability to acquire and generalize manipulation "tricks"
We present a framework that enables machines to acquire such manipulation skills through a single demonstration and self-play.
These learned mechanisms and samplers can be seamlessly integrated into standard task and motion planners.
arXiv Detail & Related papers (2023-11-06T17:35:42Z) - Learning to Design and Use Tools for Robotic Manipulation [21.18538869008642]
Recent techniques for jointly optimizing morphology and control via deep learning are effective at designing locomotion agents.
We propose learning a designer policy, rather than a single design.
We show that this framework is more sample efficient than prior methods in multi-goal or multi-variant settings.
arXiv Detail & Related papers (2023-11-01T18:00:10Z) - Learning Generalizable Tool-use Skills through Trajectory Generation [13.879860388944214]
We train a single model on four different deformable object manipulation tasks.
The model generalizes to various novel tools, significantly outperforming baselines.
We further test our trained policy in the real world with unseen tools, where it achieves the performance comparable to human.
arXiv Detail & Related papers (2023-09-29T21:32:42Z) - Learning to Transfer In-Hand Manipulations Using a Greedy Shape
Curriculum [79.6027464700869]
We show that natural and robust in-hand manipulation of simple objects in a dynamic simulation can be learned from a high quality motion capture example.
We propose a simple greedy curriculum search algorithm that can successfully apply to a range of objects such as a teapot, bunny, bottle, train, and elephant.
arXiv Detail & Related papers (2023-03-14T17:08:19Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
We introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks.
ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks.
We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs.
arXiv Detail & Related papers (2022-11-11T11:24:55Z) - ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically
Simulated Characters [123.88692739360457]
General-purpose motor skills enable humans to perform complex tasks.
These skills also provide powerful priors for guiding their behaviors when learning new tasks.
We present a framework for learning versatile and reusable skill embeddings for physically simulated characters.
arXiv Detail & Related papers (2022-05-04T06:13:28Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - How to select and use tools? : Active Perception of Target Objects Using
Multimodal Deep Learning [9.677391628613025]
We focus on active perception using multimodal sensorimotor data while a robot interacts with objects.
We construct a deep neural networks (DNN) model that learns to recognize object characteristics.
We also examine the contributions of images, force, and tactile data and show that learning a variety of multimodal information results in rich perception for tool use.
arXiv Detail & Related papers (2021-06-04T12:49:30Z) - TANGO: Commonsense Generalization in Predicting Tool Interactions for
Mobile Manipulators [15.61285199988595]
We introduce TANGO, a novel neural model for predicting task-specific tool interactions.
TANGO encodes the world state comprising of objects and symbolic relationships between them using a graph neural network.
We show that by augmenting the representation of the environment with pre-trained embeddings derived from a knowledge-base, the model can generalize effectively to novel environments.
arXiv Detail & Related papers (2021-05-05T18:11:57Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.