Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs
- URL: http://arxiv.org/abs/2403.19107v1
- Date: Thu, 28 Mar 2024 02:51:33 GMT
- Title: Synthetic Medical Imaging Generation with Generative Adversarial Networks For Plain Radiographs
- Authors: John R. McNulty, Lee Kho, Alexandria L. Case, Charlie Fornaca, Drew Johnston, David Slater, Joshua M. Abzug, Sybil A. Russell,
- Abstract summary: The purpose of this investigation was to develop a reusable open-source synthetic image generation pipeline, the GAN Image Synthesis Tool (GIST)
The pipeline helps to improve and standardize AI algorithms in the digital health space by generating high quality synthetic image data that is not linked to specific patients.
- Score: 34.98319691651471
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In medical imaging, access to data is commonly limited due to patient privacy restrictions and the issue that it can be difficult to acquire enough data in the case of rare diseases.[1] The purpose of this investigation was to develop a reusable open-source synthetic image generation pipeline, the GAN Image Synthesis Tool (GIST), that is easy to use as well as easy to deploy. The pipeline helps to improve and standardize AI algorithms in the digital health space by generating high quality synthetic image data that is not linked to specific patients. Its image generation capabilities include the ability to generate imaging of pathologies or injuries with low incidence rates. This improvement of digital health AI algorithms could improve diagnostic accuracy, aid in patient care, decrease medicolegal claims, and ultimately decrease the overall cost of healthcare. The pipeline builds on existing Generative Adversarial Networks (GANs) algorithms, and preprocessing and evaluation steps were included for completeness. For this work, we focused on ensuring the pipeline supports radiography, with a focus on synthetic knee and elbow x-ray images. In designing the pipeline, we evaluated the performance of current GAN architectures, studying the performance on available x-ray data. We show that the pipeline is capable of generating high quality and clinically relevant images based on a lay person's evaluation and the Fr\'echet Inception Distance (FID) metric.
Related papers
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive
Survey [6.277848092408045]
Data quality is the key factor for the development of trustworthy AI in healthcare.
Access to good quality datasets is limited by the technical difficulty of data acquisition.
Large-scale sharing of healthcare data is hindered by strict ethical restrictions.
arXiv Detail & Related papers (2022-09-17T13:34:17Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
Generative Adversarial Networks (GANs) can generate realistic but novel samples, and thus effectively cover the real image distribution.
This thesis contains four GAN projects aiming to present such novel applications' clinical relevance in collaboration with physicians.
arXiv Detail & Related papers (2021-06-03T15:08:14Z) - Evaluating the Clinical Realism of Synthetic Chest X-Rays Generated
Using Progressively Growing GANs [0.0]
Chest x-rays are a vital tool in the workup of many patients.
There is an ever pressing need for greater quantities of labelled data to develop new diagnostic tools.
Previous work has sought to address these concerns by creating class-specific GANs that synthesise images to augment training data.
arXiv Detail & Related papers (2020-10-07T11:47:22Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.