論文の概要: Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2403.19111v1
- Date: Thu, 28 Mar 2024 03:07:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:32:29.558254
- Title: Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection
- Title(参考訳): ビデオ異常検出のためのパッチ時空間関係予測
- Authors: Hao Shen, Lu Shi, Wanru Xu, Yigang Cen, Linna Zhang, Gaoyun An,
- Abstract要約: ビデオ異常検出(VAD)は、特定のコンテキストと時間枠内の異常を識別することを目的としている。
近年の深層学習に基づくVADモデルは,高解像度フレームの生成によって有望な結果を示した。
本稿では, パッチ間関係予測タスクを通じて, VADの自己教師型学習手法を提案する。
- 参考スコア(独自算出の注目度): 19.643936110623653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Anomaly Detection (VAD), aiming to identify abnormalities within a specific context and timeframe, is crucial for intelligent Video Surveillance Systems. While recent deep learning-based VAD models have shown promising results by generating high-resolution frames, they often lack competence in preserving detailed spatial and temporal coherence in video frames. To tackle this issue, we propose a self-supervised learning approach for VAD through an inter-patch relationship prediction task. Specifically, we introduce a two-branch vision transformer network designed to capture deep visual features of video frames, addressing spatial and temporal dimensions responsible for modeling appearance and motion patterns, respectively. The inter-patch relationship in each dimension is decoupled into inter-patch similarity and the order information of each patch. To mitigate memory consumption, we convert the order information prediction task into a multi-label learning problem, and the inter-patch similarity prediction task into a distance matrix regression problem. Comprehensive experiments demonstrate the effectiveness of our method, surpassing pixel-generation-based methods by a significant margin across three public benchmarks. Additionally, our approach outperforms other self-supervised learning-based methods.
- Abstract(参考訳): ビデオ異常検出(VAD)は、特定のコンテキストや時間枠内の異常を識別することを目的としており、インテリジェントなビデオ監視システムにとって不可欠である。
近年の深層学習に基づくVADモデルは高解像度のフレームを生成することによって有望な結果を示したが、ビデオフレームにおける詳細な空間的・時間的コヒーレンスを保存する能力に欠けることが多い。
この問題に対処するために,我々は,パッチ間関係予測タスクを通じて,VADのための自己教師付き学習手法を提案する。
具体的には、映像フレームの深い視覚的特徴を捉え、外観と動きのパターンをモデル化する空間的次元と時間的次元に対処する2分岐型視覚トランスフォーマーネットワークを提案する。
各次元におけるパッチ間関係は、パッチ間の類似性と各パッチの順序情報とに分離される。
メモリ消費を軽減するため、注文情報予測タスクを多ラベル学習問題に変換し、パッチ間類似性予測タスクを距離行列回帰問題に変換する。
総合的な実験により,3つの公開ベンチマークにおいて,画素生成法をはるかに上回り,本手法の有効性を実証した。
さらに,本手法は,他の自己教師型学習手法よりも優れている。
関連論文リスト
- Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
ビデオオブジェクト検出(VOD)は、オブジェクトの外観における高いフレーム間変動と、いくつかのフレームにおける多様な劣化を懸念する必要がある。
現代のアグリゲーション法のほとんどは、高い計算コストに苦しむ2段階検出器用に調整されている。
この研究は、特徴選択と集約の非常に単純だが強力な戦略を考案し、限界計算コストでかなりの精度を得る。
論文 参考訳(メタデータ) (2024-07-29T02:12:11Z) - Delving into CLIP latent space for Video Anomaly Recognition [24.37974279994544]
本稿では,CLIP などの大規模言語と視覚(LLV)モデルを組み合わせた新しい手法 AnomalyCLIP を提案する。
当社のアプローチでは、通常のイベントサブスペースを特定するために、潜伏するCLIP機能空間を操作することが特に必要です。
異常フレームがこれらの方向に投影されると、それらが特定のクラスに属している場合、大きな特徴量を示す。
論文 参考訳(メタデータ) (2023-10-04T14:01:55Z) - Spatial-Temporal Knowledge-Embedded Transformer for Video Scene Graph
Generation [64.85974098314344]
映像シーングラフ生成(VidSGG)は、映像シーン内の物体を特定し、その映像との関係を推測することを目的としている。
因みに、オブジェクトペアとその関係は、各画像内の空間的共起相関と、異なる画像間の時間的一貫性/遷移相関を享受する。
本稿では,従来の空間的時間的知識をマルチヘッド・クロスアテンション機構に組み込んだ時空間的知識埋め込み型トランス (STKET) を提案する。
論文 参考訳(メタデータ) (2023-09-23T02:40:28Z) - Learning Appearance-motion Normality for Video Anomaly Detection [11.658792932975652]
時空間記憶を付加した2ストリーム自動エンコーダフレームワークを提案する。
見た目の正常さと動きの正常さを独立に学習し、敵の学習を通して相関関係を探索する。
我々のフレームワークは最先端の手法より優れており、UCSD Ped2とCUHK Avenueのデータセットで98.1%、89.8%のAUCを実現している。
論文 参考訳(メタデータ) (2022-07-27T08:30:19Z) - Multi-Contextual Predictions with Vision Transformer for Video Anomaly
Detection [22.098399083491937]
ビデオの時間的文脈を理解することは、異常検出において重要な役割を果たす。
我々は3つの異なる文脈予測ストリームを持つトランスモデルを設計する。
連続する正常フレームの欠落フレームの予測を学習することにより、ビデオ内の様々な正常パターンを効果的に学習することができる。
論文 参考訳(メタデータ) (2022-06-17T05:54:31Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - GTA: Global Temporal Attention for Video Action Understanding [51.476605514802806]
空間的注意を軸にグローバルな時間的注目を行うグローバルテンポラルアテンション(AGT:Global Temporal Attention)を分離的に紹介します。
2Dおよび3Dネットワーク上でのテストは、我々のアプローチが時間的モデリングを一貫して強化し、3つのビデオアクション認識データセットに対して最先端のパフォーマンスを提供することを示す。
論文 参考訳(メタデータ) (2020-12-15T18:58:21Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Representation Learning with Video Deep InfoMax [26.692717942430185]
我々は、DeepInfoMaxをビデオ領域に拡張し、時間的ネットワークにおける同様の構造を利用する。
自然数列と時間ダウンサンプル列の両方からの描画ビューが,キネティクスに制約された行動認識タスクに結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-07-27T02:28:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。