Disentangling Length from Quality in Direct Preference Optimization
- URL: http://arxiv.org/abs/2403.19159v2
- Date: Mon, 9 Sep 2024 04:39:31 GMT
- Title: Disentangling Length from Quality in Direct Preference Optimization
- Authors: Ryan Park, Rafael Rafailov, Stefano Ermon, Chelsea Finn,
- Abstract summary: Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models.
RLHF is know to exploit biases in human preferences, such as verbosity.
We develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality.
- Score: 93.74831404396174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models. However, RLHF is know to exploit biases in human preferences, such as verbosity. A well-formatted and eloquent answer is often more highly rated by users, even when it is less helpful and objective. A number of approaches have been developed to control those biases in the classical RLHF literature, but the problem remains relatively under-explored for Direct Alignment Algorithms such as Direct Preference Optimization (DPO). Unlike classical RLHF, DPO does not train a separate reward model or use reinforcement learning directly, so previous approaches developed to control verbosity cannot be directly applied to this setting. Our work makes several contributions. For the first time, we study the length problem in the DPO setting, showing significant exploitation in DPO and linking it to out-of-distribution bootstrapping. We then develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality. We demonstrate these effects across datasets on summarization and dialogue, where we achieve up to 20\% improvement in win rates when controlling for length, despite the GPT4 judge's well-known verbosity bias.
Related papers
- Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence [31.03305638930844]
Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of Large Language Models with human preferences.
Despite its promising efficacy, DPO faces a notable drawback: "verbosity"
We propose that the issue also stems from an inherent algorithmic length reliance in DPO.
arXiv Detail & Related papers (2024-06-16T14:24:30Z) - Bootstrapping Language Models with DPO Implicit Rewards [45.68366127605774]
Direct preference optimization (DPO) has greatly simplified the process from past work in reinforcement learning from human feedback.
In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM.
Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment and achieves superior performance.
arXiv Detail & Related papers (2024-06-14T06:57:18Z) - Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms [50.808123629394245]
Direct Alignment Algorithms (DDAs) like Direct Preference Optimization have emerged as alternatives to the classical RLHF pipeline.
This work formulates and formalizes the reward over-optimization or hacking problem for DAAs and explores its consequences across objectives, training regimes, and model scales.
arXiv Detail & Related papers (2024-06-05T03:41:37Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
We study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs.
We find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets.
arXiv Detail & Related papers (2024-05-29T21:29:44Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - A Long Way to Go: Investigating Length Correlations in RLHF [59.49656695716066]
This paper demonstrates, on three diverse settings, that optimizing for response length is a significant factor behind RLHF.
We find improvements in reward to largely be driven by increasing response length, instead of other features.
Even a purely length-based reward reproduces most downstream RLHF improvements over supervised fine-tuned models.
arXiv Detail & Related papers (2023-10-05T17:38:28Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
We propose a novel algorithm for aligning large language models to human preferences.
We show that it consistently outperforms PPO in language tasks by a large margin.
We also provide a theoretical justification supporting the design of our loss function.
arXiv Detail & Related papers (2023-06-04T01:59:40Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.