Bias Fitting to Mitigate Length Bias of Reward Model in RLHF
- URL: http://arxiv.org/abs/2505.12843v1
- Date: Mon, 19 May 2025 08:29:28 GMT
- Title: Bias Fitting to Mitigate Length Bias of Reward Model in RLHF
- Authors: Kangwen Zhao, Jianfeng Cai, Jinhua Zhu, Ruopei Sun, Dongyun Xue, Wengang Zhou, Li Li, Houqiang Li,
- Abstract summary: Reinforcement Learning from Human Feedback relies on reward models to align large language models with human preferences.<n>We propose FiMi-RM, a framework that autonomously learns and corrects underlying bias patterns.<n> Experimental results demonstrate that FiMi-RM achieves a more balanced length-reward distribution.
- Score: 81.44256822500257
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement Learning from Human Feedback relies on reward models to align large language models with human preferences. However, RLHF often suffers from reward hacking, wherein policy learning exploits flaws in the trained reward model to maximize reward scores without genuinely aligning with human preferences. A significant example of such reward hacking is length bias, where reward models usually favor longer responses irrespective of actual response quality. Previous works on length bias have notable limitations, these approaches either mitigate bias without characterizing the bias form, or simply assume a linear length-reward relation. To accurately model the intricate nature of length bias and facilitate more effective bias mitigation, we propose FiMi-RM (Bias Fitting to Mitigate Length Bias of Reward Model in RLHF), a framework that autonomously learns and corrects underlying bias patterns. Our approach consists of three stages: First, we train a standard reward model which inherently contains length bias. Next, we deploy a lightweight fitting model to explicitly capture the non-linear relation between length and reward. Finally, we incorporate this learned relation into the reward model to debias. Experimental results demonstrate that FiMi-RM achieves a more balanced length-reward distribution. Furthermore, when applied to alignment algorithms, our debiased reward model improves length-controlled win rate and reduces verbosity without compromising its performance.
Related papers
- CoLD: Counterfactually-Guided Length Debiasing for Process Reward Models [29.95434387343843]
We propose a unified framework that mitigates length bias through three components.<n>CoLD consistently reduces reward-length correlation, improves accuracy in step selection, and encourages more concise, logically valid reasoning.
arXiv Detail & Related papers (2025-07-21T15:07:59Z) - Disentangling Length Bias In Preference Learning Via Response-Conditioned Modeling [87.17041933863041]
Reinforcement Learning from Human Feedback (RLHF) has achieved considerable success in aligning large language models (LLMs)<n>We introduce a $textbfR$esponse-$textbfc$onditioned $textbfB$radley-$textbfT$erry (Rc-BT) model that enhances the model's capability in length bias mitigating and length instruction following.<n>We also propose the Rc-RM and Rc-DPO algorithm to leverage the Rc-BT model for reward modeling and direct policy optimization
arXiv Detail & Related papers (2025-02-02T14:50:25Z) - Averaging log-likelihoods in direct alignment [43.77763433288893]
We introduce a new averaging operator to be composed with the optimality operator giving the best policy for the underlying RL problem.
We empirically study the effect of such averaging, observing a trade-off between the length of generations and their scores.
arXiv Detail & Related papers (2024-06-27T14:07:38Z) - Disentangling Length from Quality in Direct Preference Optimization [93.74831404396174]
Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models.
RLHF is know to exploit biases in human preferences, such as verbosity.
We develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality.
arXiv Detail & Related papers (2024-03-28T06:03:47Z) - ODIN: Disentangled Reward Mitigates Hacking in RLHF [127.35607931337019]
We study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback.
A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores.
Our approach almost eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
arXiv Detail & Related papers (2024-02-11T22:40:12Z) - Loose lips sink ships: Mitigating Length Bias in Reinforcement Learning
from Human Feedback [55.78118035358662]
Reinforcement learning from human feedback serves as a crucial bridge, aligning large language models with human and societal values.
We have identified that the reward model often finds shortcuts to bypass its intended objectives.
We propose an innovative solution, applying the Product-of-Experts technique to separate reward modeling from the influence of sequence length.
arXiv Detail & Related papers (2023-10-08T15:14:39Z) - A Long Way to Go: Investigating Length Correlations in RLHF [59.49656695716066]
This paper demonstrates, on three diverse settings, that optimizing for response length is a significant factor behind RLHF.
We find improvements in reward to largely be driven by increasing response length, instead of other features.
Even a purely length-based reward reproduces most downstream RLHF improvements over supervised fine-tuned models.
arXiv Detail & Related papers (2023-10-05T17:38:28Z) - Scaling Laws for Reward Model Overoptimization [19.93331579503503]
We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-$n$ sampling.
We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup.
arXiv Detail & Related papers (2022-10-19T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.