論文の概要: Mining Bug Repositories for Multi-Fault Programs
- arxiv url: http://arxiv.org/abs/2403.19171v1
- Date: Thu, 28 Mar 2024 06:35:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:12:54.306879
- Title: Mining Bug Repositories for Multi-Fault Programs
- Title(参考訳): マルチフォールトプログラムのためのマイニングバグリポジトリ
- Authors: Dylan Callaghan, Bernd Fischer,
- Abstract要約: 個々のエントリで複数のバグを識別するデータセットの拡張について説明する。
テストケースの移植とフォールトロケーションの翻訳を,バグの公開と発見に使用しています。
したがって、実際のソフトウェアプロジェクトの中で、真のマルチフォールトバージョンのデータセットを提供します。
- 参考スコア(独自算出の注目度): 0.25782420501870285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Datasets such as Defects4J and BugsInPy that contain bugs from real-world software projects are necessary for a realistic evaluation of automated debugging tools. However these datasets largely identify only a single bug in each entry, while real-world software projects (including those used in Defects4J and BugsInPy) typically contain multiple bugs at the same time. We lift this limitation and describe an extension to these datasets in which multiple bugs are identified in individual entries. We use test case transplantation and fault location translation, in order to expose and locate the bugs, respectively. We thus provide datasets of true multi-fault versions within real-world software projects, which maintain the properties and usability of the original datasets.
- Abstract(参考訳): Defects4JやBugsInPyのような実際のソフトウェアプロジェクトのバグを含むデータセットは、自動デバッグツールの現実的な評価に必要である。
実際のソフトウェアプロジェクト(Defects4JやBugsInPyで使用されているものを含む)には、通常は複数のバグが同時に含まれている。
この制限を解除し、個々のエントリで複数のバグが識別されるデータセットの拡張を記述します。
テストケースの移植とフォールトロケーションの翻訳をそれぞれ使用して,バグの公開と発見を行います。
これにより、実際のソフトウェアプロジェクトにおいて、元のデータセットの特性とユーザビリティを維持するために、真のマルチフォールトバージョンのデータセットを提供する。
関連論文リスト
- Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions [0.0]
より高い品質を示すものとしてリポジトリで発見されたり修正されたりしたバグを認識しているのは、プログラマの3分の1に過ぎない。
この発見は、プログラマがテストとバグレポートの重要性を誤解することが多いという考えを裏付けるものだ。
論文 参考訳(メタデータ) (2024-03-16T04:40:19Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench - LLM(Large Language Models)のベンチマーク。
C++、Java、Pythonの4つの主要なバグカテゴリと18のマイナータイプをカバーする。
ゼロショットシナリオで2つの商用および4つのオープンソースモデルを評価する。
論文 参考訳(メタデータ) (2024-01-09T15:46:38Z) - Automated Bug Generation in the era of Large Language Models [6.0770779409377775]
BugFarmは任意のコードを複数の複雑なバグに変換する。
BUGFARMが生成した1.9万以上の変異株から435k以上のバグを総合的に評価する。
論文 参考訳(メタデータ) (2023-10-03T20:01:51Z) - PreciseBugCollector: Extensible, Executable and Precise Bug-fix
Collection [8.79879909193717]
正確な多言語バグ収集手法であるPreciseBugCollectorを紹介する。
外部バグリポジトリでリポジトリをマップしてバグタイプ情報をトレースするバグトラッカと、プロジェクト固有のバグを生成するバグインジェクタの2つの新しいコンポーネントに基づいている。
現在、PreciseBugCollectorは2968のオープンソースプロジェクトから抽出された1057818のバグを含んでいる。
論文 参考訳(メタデータ) (2023-09-12T13:47:44Z) - RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic
Program Repair [75.40584530380589]
新たな検索型パッチ生成フレームワーク(RAP-Gen)を提案する。
RAP-Gen 以前のバグ修正ペアのリストから取得した関連する修正パターンを明示的に活用する。
RAP-GenをJavaScriptのTFixベンチマークとJavaのCode RefinementとDefects4Jベンチマークの2つのプログラミング言語で評価する。
論文 参考訳(メタデータ) (2023-09-12T08:52:56Z) - WELL: Applying Bug Detectors to Bug Localization via Weakly Supervised
Learning [37.09621161662761]
本稿では,バグローカライゼーションモデルをトレーニングするためのWEakly supervised bug LocaLization (WELL) 手法を提案する。
CodeBERTはバギーまたはノーのバイナリラベル付きデータに基づいて微調整されるため、WELLはバグのローカライゼーションを弱教師付きで解決することができる。
論文 参考訳(メタデータ) (2023-05-27T06:34:26Z) - Too Few Bug Reports? Exploring Data Augmentation for Improved
Changeset-based Bug Localization [7.884766610628946]
本稿では,バグレポートの異なる構成要素に作用する新しいデータ拡張演算子を提案する。
また、拡張バグレポートのコーパス作成を目的としたデータバランス戦略についても述べる。
論文 参考訳(メタデータ) (2023-05-25T19:06:01Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
我々は,タスク実行前に利用可能であり,また自然発生しているバグレポートの議論を,開発者による追加情報の必要性を回避して利用することを提案する。
このような議論から派生したさまざまな自然言語コンテキストがバグ修正に役立ち、オラクルのバグ修正コミットに対応するコミットメッセージの使用よりもパフォーマンスの向上につながることを実証する。
論文 参考訳(メタデータ) (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssueは、現実的なバグローカライゼーションのためのベンチマークである。
実際のJavaバグと合成Javaバグの多様性を備えた一般的なベンチマークを提供する。
われわれは,バグローカライゼーションの最先端技術として,APRの性能向上と,現代の開発サイクルへの適用性の向上を期待している。
論文 参考訳(メタデータ) (2022-07-21T20:17:53Z) - S3M: Siamese Stack (Trace) Similarity Measure [55.58269472099399]
本稿では、深層学習に基づくスタックトレースの類似性を計算する最初のアプローチであるS3Mを紹介します。
BiLSTMエンコーダと、類似性を計算するための完全接続型分類器をベースとしている。
私たちの実験は、オープンソースデータとプライベートなJetBrainsデータセットの両方において、最先端のアプローチの優位性を示しています。
論文 参考訳(メタデータ) (2021-03-18T21:10:41Z) - D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using
Differential Analysis [55.15995704119158]
静的解析ツールによって報告されたラベル問題に対する差分解析に基づくアプローチであるD2Aを提案する。
D2Aを使用して大きなラベル付きデータセットを生成し、脆弱性識別のためのモデルをトレーニングします。
論文 参考訳(メタデータ) (2021-02-16T07:46:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。