論文の概要: Dual-Personalizing Adapter for Federated Foundation Models
- arxiv url: http://arxiv.org/abs/2403.19211v1
- Date: Thu, 28 Mar 2024 08:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 17:03:08.536767
- Title: Dual-Personalizing Adapter for Federated Foundation Models
- Title(参考訳): フェデレーションモデルのためのデュアルパーソナライズアダプタ
- Authors: Yiyuan Yang, Guodong Long, Tao Shen, Jing Jiang, Michael Blumenstein,
- Abstract要約: そこで我々は,テストタイムのパーソナライゼーション(test-time personalization)という新たな設定を提案し,対象とするローカルタスクに集中し,テストタイムの分散シフトを示すタスクに拡張する。
具体的には、グローバルアダプタとテスト時間分散シフトとパーソナライズに対処するローカルアダプタからなる、二重対人アダプタアーキテクチャ(FedDPA)を提案する。
提案手法の有効性を,異なるNLPタスクのベンチマークデータセットを用いて評価した。
- 参考スコア(独自算出の注目度): 35.863585349109385
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, foundation models, particularly large language models (LLMs), have demonstrated an impressive ability to adapt to various tasks by fine-tuning large amounts of instruction data. Notably, federated foundation models emerge as a privacy preservation method to fine-tune models collaboratively under federated learning (FL) settings by leveraging many distributed datasets with non-IID data. To alleviate communication and computation overhead, parameter-efficient methods are introduced for efficiency, and some research adapted personalization methods to federated foundation models for better user preferences alignment. However, a critical gap in existing research is the neglect of test-time distribution shifts in real-world applications. Therefore, to bridge this gap, we propose a new setting, termed test-time personalization, which not only concentrates on the targeted local task but also extends to other tasks that exhibit test-time distribution shifts. To address challenges in this new setting, we explore a simple yet effective solution to learn a comprehensive foundation model. Specifically, a dual-personalizing adapter architecture (FedDPA) is proposed, comprising a global adapter and a local adapter for addressing test-time distribution shifts and personalization, respectively. Additionally, we introduce an instance-wise dynamic weighting mechanism to optimize the balance between the global and local adapters, enhancing overall performance. The effectiveness of the proposed method has been evaluated on benchmark datasets across different NLP tasks.
- Abstract(参考訳): 近年,基礎モデル,特に大規模言語モデル (LLM) は,大量の命令データを微調整することで,様々なタスクに適応できることが実証されている。
特に、フェデレーションベースモデルは、非IIDデータによる多くの分散データセットを活用することにより、フェデレーションラーニング(FL)設定下で協調的にモデルを微調整するプライバシー保護手法として出現する。
コミュニケーションと計算のオーバーヘッドを軽減するために, パラメータ効率の手法を導入し, ユーザ嗜好の整合性を高めるために, ファウンデーションモデルに適応したパーソナライズ手法を提案する。
しかし、既存の研究における重要なギャップは、実世界のアプリケーションにおけるテスト時間分布シフトの無視である。
そこで我々は,このギャップを埋めるため,テストタイムパーソナライゼーションと呼ばれる新たな設定を提案する。
この新たな環境での課題に対処するため、包括的基礎モデルを学ぶためのシンプルだが効果的なソリューションを探究する。
具体的には、グローバルアダプタと、テスト時間分布シフトとパーソナライズに対処するローカルアダプタからなる、二重対人アダプタアーキテクチャ(FedDPA)を提案する。
さらに,グローバルアダプタとローカルアダプタのバランスを最適化し,全体的な性能を向上させるために,インスタンス単位の動的重み付け機構を導入する。
提案手法の有効性を,異なるNLPタスクのベンチマークデータセットを用いて評価した。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Adaptive Test-Time Personalization for Federated Learning [51.25437606915392]
テスト時パーソナライズド・フェデレーション・ラーニング(TTPFL)と呼ばれる新しい設定を導入する。
TTPFLでは、クライアントはテスト期間中にラベル付きデータに頼ることなく、教師なしの方法でグローバルモデルをローカルに適応する。
本稿では,ソースドメイン間の分散シフトから,モデル内の各モジュールの適応率を適応的に学習する ATP という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-28T20:42:47Z) - Profit: Benchmarking Personalization and Robustness Trade-off in
Federated Prompt Tuning [40.16581292336117]
フェデレートラーニング(FL)の多くの応用において、クライアントはローカルデータを用いてパーソナライズされたモデルを求めているが、一般的なグローバルな知識を保持するという意味でも堅牢である。
フェデレーションシステムの設計において、このパーソナライゼーションとロバストネスのトレードオフをどのようにナビゲートするかを理解することは重要である。
論文 参考訳(メタデータ) (2023-10-06T23:46:33Z) - FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal
Heterogeneous Federated Learning [37.96957782129352]
我々はFederated Dual-Aadapter Teacher(Fed DAT)と呼ばれる異種マルチモーダル基礎モデルに適した微調整フレームワークを提案する。
Fed DATは、クライアントのローカル更新を規則化し、MKD(Mutual Knowledge Distillation)を効率的な知識伝達に適用することで、データの均一性に対処する。
その有効性を示すために、異なる種類のデータ不均一性を持つ4つの多モードFLベンチマークについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-21T21:57:01Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL)は、複数のクライアントに対して、独自のプライベートデータを共有せずに機械学習モデルをトレーニングすることを目的としている。
疎局所モデルを適応的かつ効率的に学習し,効率的なパーソナライズFLのためのpFedGateを提案する。
我々は,pFedGateが最先端手法よりも優れたグローバル精度,個人精度,効率性を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-05-04T12:21:34Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
フェデレートラーニング(FL)は、プライバシを改善した分散機械学習パラダイムとして普及している。
本稿では,より優れたパーソナライズ結果を得るために,訓練されたモデルをフェデレーション方式で適応させることを目的とした,フェデレーション適応と呼ばれる新しい概念を提案する。
PFA(Privacy-preserving Federated Adaptation)を実現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-02T08:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。