論文の概要: DeepSample: DNN sampling-based testing for operational accuracy assessment
- arxiv url: http://arxiv.org/abs/2403.19271v1
- Date: Thu, 28 Mar 2024 09:56:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:43:33.405379
- Title: DeepSample: DNN sampling-based testing for operational accuracy assessment
- Title(参考訳): DeepSample: DNNサンプリングによる運用精度評価
- Authors: Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
- Abstract要約: ディープニューラルネットワーク(Deep Neural Networks, DNN)は、多くのソフトウェアシステムの分類および回帰タスクのコアコンポーネントである。
課題は、ラベリングコストを減らすために、可能な限り小さなテスト入力の代表的なセットを選択することである。
本研究では,費用対効果評価のためのDNNテスト技術のファミリーであるDeepSampleについて述べる。
- 参考スコア(独自算出の注目度): 12.029919627622954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNN) are core components for classification and regression tasks of many software systems. Companies incur in high costs for testing DNN with datasets representative of the inputs expected in operation, as these need to be manually labelled. The challenge is to select a representative set of test inputs as small as possible to reduce the labelling cost, while sufficing to yield unbiased high-confidence estimates of the expected DNN accuracy. At the same time, testers are interested in exposing as many DNN mispredictions as possible to improve the DNN, ending up in the need for techniques pursuing a threefold aim: small dataset size, trustworthy estimates, mispredictions exposure. This study presents DeepSample, a family of DNN testing techniques for cost-effective accuracy assessment based on probabilistic sampling. We investigate whether, to what extent, and under which conditions probabilistic sampling can help to tackle the outlined challenge. We implement five new sampling-based testing techniques, and perform a comprehensive comparison of such techniques and of three further state-of-the-art techniques for both DNN classification and regression tasks. Results serve as guidance for best use of sampling-based testing for faithful and high-confidence estimates of DNN accuracy in operation at low cost.
- Abstract(参考訳): ディープニューラルネットワーク(Deep Neural Networks, DNN)は、多くのソフトウェアシステムの分類および回帰タスクのコアコンポーネントである。
企業は、手動でラベル付けする必要があるため、DNNを運用中の入力を表すデータセットでテストする上で、高いコストが発生する。
課題は、ラベル付けコストを削減するために、できるだけ小さなテスト入力の代表的なセットを選択することであり、予測されたDNN精度の、バイアスのない高信頼度推定値を得るのに十分である。
同時に、テスタは、DNNを改善するために可能な限り多くのDNNの誤予測を公開することに興味を持ち、最終的には、小さなデータセットサイズ、信頼できる見積、誤予測露出という3つの目的を追求するテクニックの必要性に終止符を打った。
本研究では,確率的サンプリングに基づく費用対効果評価のためのDNN試験手法のファミリーであるDeepSampleを提案する。
本研究は,どの程度,どの条件下で,確率的サンプリングが課題の解決に有効かを検討する。
我々は,5つの新しいサンプリングベーステスト手法を実装し,これらの手法を総合的に比較し,DNN分類および回帰タスクの3つの最新技術について述べる。
その結果,DNNの精度を高信頼かつ高信頼に評価するためのサンプリングベース試験を低コストで実施するためのガイダンスが得られた。
関連論文リスト
- Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models [40.38541033389344]
ディープニューラルネットワーク(Deep Neural Networks, DNN)は、様々なコンピュータビジョンタスクのための強力なツールであるが、信頼性の高い不確実性定量化に苦慮することが多い。
本稿では、DNNをBNNにシームレスに変換するシンプルでスケーラブルな戦略であるAdaptable Bayesian Neural Network (ABNN)を紹介する。
画像分類とセマンティックセグメンテーションタスクのための複数のデータセットにわたる広範囲な実験を行い、ABNNが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-12-23T16:39:24Z) - TEASMA: A Practical Methodology for Test Adequacy Assessment of Deep Neural Networks [4.528286105252983]
TEASMAはDeep Neural Networksのテストセットの精度を正確に評価するために設計された包括的で実用的な方法論である。
遠隔ベースサプライズカバレッジ(DSC)、ライクフードベースサプライズカバレッジ(LSC)、入出力カバレッジ(IDC)、ミューテーションスコア(MS)の4つの測定値を用いてTEASMAを評価する。
論文 参考訳(メタデータ) (2023-08-02T17:56:05Z) - DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep
Neural Networks [0.6249768559720121]
DeepGDはディープニューラルネットワーク(DNN)のためのブラックボックス多目的テスト選択アプローチ
大規模なラベル付けされていないデータセットから高い障害を露呈するパワーでテスト入力の選択を優先順位付けすることで、ラベル付けのコストを低減します。
論文 参考訳(メタデータ) (2023-03-08T20:33:09Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - A Survey on Assessing the Generalization Envelope of Deep Neural
Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くのアプリケーションで最先端のパフォーマンスを達成する。
入力を受けたDNNが、通常、その決定基準が不透明であるため、正しい出力を提供するかどうかを事前に判断することは困難である。
本調査は,機械学習手法,特にDNNの一般化性能について,大規模フレームワーク内の3つの分野を関連づけるものである。
論文 参考訳(メタデータ) (2020-08-21T09:12:52Z) - Increasing Trustworthiness of Deep Neural Networks via Accuracy
Monitoring [20.456742449675904]
ディープニューラルネットワーク(DNN)の推論精度は重要なパフォーマンス指標であるが、実際のテストデータセットによって大きく異なる可能性がある。
これにより、特に安全クリティカルなアプリケーションにおいて、DNNの信頼性に関する重要な懸念が持ち上がっている。
本稿では、DNNのソフトマックス確率出力のみを入力とするニューラルネットワークに基づく精度監視モデルを提案する。
論文 参考訳(メタデータ) (2020-07-03T03:09:36Z) - Computing the Testing Error without a Testing Set [33.068870286618655]
テストデータセットを必要としないトレーニングとテストの間のパフォーマンスギャップを推定するアルゴリズムを導出します。
これによって、アクセスできないサンプルでも、DNNのテストエラーを計算できます。
論文 参考訳(メタデータ) (2020-05-01T15:35:50Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。