FlowDepth: Decoupling Optical Flow for Self-Supervised Monocular Depth Estimation
- URL: http://arxiv.org/abs/2403.19294v1
- Date: Thu, 28 Mar 2024 10:31:23 GMT
- Title: FlowDepth: Decoupling Optical Flow for Self-Supervised Monocular Depth Estimation
- Authors: Yiyang Sun, Zhiyuan Xu, Xiaonian Wang, Jing Yao,
- Abstract summary: We propose FlowDepth, where a Dynamic Motion Flow Module (DMFM) decouples the optical flow by a mechanism-based approach and warps the dynamic regions thus solving the mismatch problem.
For the unfairness of photometric errors caused by high-freq and low-texture regions, we use Depth-Cue-Aware Blur (DCABlur) and Cost-Volume sparsity loss respectively at the input and the loss level to solve the problem.
- Score: 8.78717459496649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised multi-frame methods have currently achieved promising results in depth estimation. However, these methods often suffer from mismatch problems due to the moving objects, which break the static assumption. Additionally, unfairness can occur when calculating photometric errors in high-freq or low-texture regions of the images. To address these issues, existing approaches use additional semantic priori black-box networks to separate moving objects and improve the model only at the loss level. Therefore, we propose FlowDepth, where a Dynamic Motion Flow Module (DMFM) decouples the optical flow by a mechanism-based approach and warps the dynamic regions thus solving the mismatch problem. For the unfairness of photometric errors caused by high-freq and low-texture regions, we use Depth-Cue-Aware Blur (DCABlur) and Cost-Volume sparsity loss respectively at the input and the loss level to solve the problem. Experimental results on the KITTI and Cityscapes datasets show that our method outperforms the state-of-the-art methods.
Related papers
- DepthFM: Fast Monocular Depth Estimation with Flow Matching [22.206355073676082]
Current discriminative approaches to this problem are limited due to blurry artifacts.
State-of-the-art generative methods suffer from slow sampling due to their SDE nature.
We observe that this can be effectively framed using flow matching, since its straight trajectories through solution space offer efficiency and high quality.
arXiv Detail & Related papers (2024-03-20T17:51:53Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
We present a novel strategy called the Diffusion Model for Image Denoising (DMID)
Our strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model.
Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics.
arXiv Detail & Related papers (2023-07-08T14:59:41Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
We propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs)
We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image.
We further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.
arXiv Detail & Related papers (2023-04-09T21:10:39Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - CbwLoss: Constrained Bidirectional Weighted Loss for Self-supervised
Learning of Depth and Pose [13.581694284209885]
Photometric differences are used to train neural networks for estimating depth and camera pose from unlabeled monocular videos.
In this paper, we deal with moving objects and occlusions utilizing the difference of the flow fields and depth structure generated by affine transformation and view synthesis.
We mitigate the effect of textureless regions on model optimization by measuring differences between features with more semantic and contextual information without adding networks.
arXiv Detail & Related papers (2022-12-12T12:18:24Z) - Frequency-Aware Self-Supervised Monocular Depth Estimation [41.97188738587212]
We present two versatile methods to enhance self-supervised monocular depth estimation models.
The high generalizability of our methods is achieved by solving the fundamental and ubiquitous problems in photometric loss function.
We are the first to propose blurring images to improve depth estimators with an interpretable analysis.
arXiv Detail & Related papers (2022-10-11T14:30:26Z) - Conditional Injective Flows for Bayesian Imaging [18.561430512510956]
Injectivity reduces memory footprint and training time while low-dimensional latent space together with architectural innovations.
C-Trumpets enable fast approximation of point estimates like MMSE or MAP as well as physically-meaningful uncertainty quantification.
arXiv Detail & Related papers (2022-04-15T22:26:21Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
We propose to incorporate feature correlation and sequential processing into dense optical flow estimation from event cameras.
Our proposed approach computes dense optical flow and reduces the end-point error by 23% on MVSEC.
arXiv Detail & Related papers (2021-08-24T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.