論文の概要: MedBN: Robust Test-Time Adaptation against Malicious Test Samples
- arxiv url: http://arxiv.org/abs/2403.19326v1
- Date: Thu, 28 Mar 2024 11:33:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:33:46.146874
- Title: MedBN: Robust Test-Time Adaptation against Malicious Test Samples
- Title(参考訳): MedBN: 悪意のあるテストサンプルに対するロバストなテスト時間適応
- Authors: Hyejin Park, Jeongyeon Hwang, Sunung Mun, Sangdon Park, Jungseul Ok,
- Abstract要約: テスト時間適応(TTA)は、トレーニングデータとテストデータの間の予期せぬ分散シフトによるパフォーマンス劣化に対処する、有望なソリューションとして登場した。
以前の研究では、テストバッチのごく一部が不正に操作された場合でも、TTA内のセキュリティ脆弱性が明らかになった。
テスト時間推論におけるバッチ正規化層内の統計量推定に中央値のロバスト性を利用する中央値バッチ正規化(MedBN)を提案する。
- 参考スコア(独自算出の注目度): 11.397666167665484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time adaptation (TTA) has emerged as a promising solution to address performance decay due to unforeseen distribution shifts between training and test data. While recent TTA methods excel in adapting to test data variations, such adaptability exposes a model to vulnerability against malicious examples, an aspect that has received limited attention. Previous studies have uncovered security vulnerabilities within TTA even when a small proportion of the test batch is maliciously manipulated. In response to the emerging threat, we propose median batch normalization (MedBN), leveraging the robustness of the median for statistics estimation within the batch normalization layer during test-time inference. Our method is algorithm-agnostic, thus allowing seamless integration with existing TTA frameworks. Our experimental results on benchmark datasets, including CIFAR10-C, CIFAR100-C and ImageNet-C, consistently demonstrate that MedBN outperforms existing approaches in maintaining robust performance across different attack scenarios, encompassing both instant and cumulative attacks. Through extensive experiments, we show that our approach sustains the performance even in the absence of attacks, achieving a practical balance between robustness and performance.
- Abstract(参考訳): テスト時間適応(TTA)は、トレーニングデータとテストデータの間の予期せぬ分散シフトによるパフォーマンス劣化に対処する、有望なソリューションとして登場した。
最近のTTAメソッドはデータバリエーションのテストに適応する上で優れているが、そのような適応性は悪意のある例に対する脆弱性モデルを公開する。
以前の研究では、テストバッチのごく一部が不正に操作された場合でも、TTA内のセキュリティ脆弱性が明らかになった。
そこで本研究では, バッチ正規化層内におけるテスト時間推論における統計評価において, 中央値のロバスト性を利用する中央値バッチ正規化(MedBN)を提案する。
提案手法はアルゴリズムに依存しないため,既存のTTAフレームワークとのシームレスな統合が可能となる。
CIFAR10-C、CIFAR100-C、ImageNet-Cなどのベンチマークデータセットに対する実験結果から、MedBNは、インスタントおよび累積攻撃の両方を含む、異なる攻撃シナリオにおける堅牢なパフォーマンスを維持する上で、既存のアプローチよりも優れていることが一貫して示されている。
大規模な実験を通じて,攻撃のない場合でも,我々のアプローチが性能を維持することを示し,ロバスト性と性能の両立を実現している。
関連論文リスト
- ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
テスト時間適応(TTA)は、トレーニング分布から逸脱した未確認のテストデータを扱うために、ディープラーニングモデルを備えている。
本稿では,エントロピー最小化と勾配ノルム,PLPDを統合した改良TTA手法ETAGEを紹介する。
提案手法は,高エントロピーと高勾配ノルムを適応から組み合わせることで,不安定を生じにくいサンプルを優先する。
論文 参考訳(メタデータ) (2024-09-14T01:25:52Z) - Discover Your Neighbors: Advanced Stable Test-Time Adaptation in Dynamic World [8.332531696256666]
Discover Your Neighbours (DYN)は、動的テスト時間適応(TTA)に特化した最初の後方自由アプローチである。
我々のDYNは階層型インスタンス統計クラスタリング(LISC)とクラスタ対応バッチ正規化(CABN)で構成されています。
DYNのロバスト性と有効性を評価し、動的データストリームパターン下での維持性能を示す実験結果を得た。
論文 参考訳(メタデータ) (2024-06-08T09:22:32Z) - Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
テスト時間適応(TTA)は、教師なし設定でストリーミングテストデータの分散シフトに対処する。
完全TTA設定内に能動学習を統合する能動テスト時間適応(ATTA)の新たな問題設定を提案する。
論文 参考訳(メタデータ) (2024-04-07T22:31:34Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
そこで本研究では, 分布変化のあるサンプルに対して, 安定な予測を行うための簡易なテスト時間適応手法を提案する。
提案手法は,強力なPLMバックボーンよりも推論時間が少なく,高い,あるいは同等の性能を実現することができる。
論文 参考訳(メタデータ) (2023-04-25T12:29:22Z) - DELTA: degradation-free fully test-time adaptation [59.74287982885375]
テスト時間バッチ正規化(BN)や自己学習といった,一般的な適応手法では,2つの好ましくない欠陥が隠されていることがわかった。
まず、テスト時間BNにおける正規化統計は、現在受信されているテストサンプルに完全に影響され、その結果、不正確な推定結果が得られることを明らかにする。
第二に、テスト時間適応中にパラメータ更新が支配的なクラスに偏っていることを示す。
論文 参考訳(メタデータ) (2023-01-30T15:54:00Z) - Uncovering Adversarial Risks of Test-Time Adaptation [41.19226800089764]
テスト時間適応(TTA)は、分散シフトに対処するための有望な解決策として提案されている。
我々は、良性サンプルの予測が同一バッチ内の悪意のあるサンプルに影響される可能性があるという知見に基づいて、TTAの新たなセキュリティ脆弱性を明らかにする。
テストバッチに少数の悪意のあるデータを注入する分散侵入攻撃(DIA)を提案する。
論文 参考訳(メタデータ) (2023-01-29T22:58:05Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
テストデータストリーム以外のデータストリームに対して堅牢な新しいテスト時間適応方式を提案する。
a)分布外サンプルの正規化を修正するIABN(Instance-Aware Batch Normalization)と、(b)クラスバランスのない方法で非i.d.ストリームからのデータストリームをシミュレートするPBRS(Predict- Balanced Reservoir Sampling)である。
論文 参考訳(メタデータ) (2022-08-10T03:05:46Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。