Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment
- URL: http://arxiv.org/abs/2403.19490v1
- Date: Thu, 28 Mar 2024 15:22:29 GMT
- Title: Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment
- Authors: Alireza Ganjdanesh, Shangqian Gao, Heng Huang,
- Abstract summary: We propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models.
The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers.
We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy.
- Score: 69.33930972652594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Structural model pruning is a prominent approach used for reducing the computational cost of Convolutional Neural Networks (CNNs) before their deployment on resource-constrained devices. Yet, the majority of proposed ideas require a pretrained model before pruning, which is costly to secure. In this paper, we propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models. The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers, and the resulting model's accuracy serves as its reward. We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy, and we regularize the model's weights to align with the selected structure by the agent. The evolving model's weights result in a dynamic reward function for the agent, which prevents using prominent episodic RL methods with stationary environment assumption for our purpose. We address this challenge by designing a mechanism to model the complex changing dynamics of the reward function and provide a representation of it to the RL agent. To do so, we take a learnable embedding for each training epoch and employ a recurrent model to calculate a representation of the changing environment. We train the recurrent model and embeddings using a decoder model to reconstruct observed rewards. Such a design empowers our agent to effectively leverage episodic observations along with the environment representations to learn a proper policy to determine performant sub-networks of the CNN model. Our extensive experiments on CIFAR-10 and ImageNet using ResNets and MobileNets demonstrate the effectiveness of our method.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
Class-incremental learning (CIL) aims to train a model to learn new classes from non-stationary data streams without forgetting old ones.
We propose a new kind of connectionist model by tailoring neural unit dynamics that adapt the behavior of neural networks for CIL.
arXiv Detail & Related papers (2024-06-04T15:47:03Z) - RePo: Resilient Model-Based Reinforcement Learning by Regularizing
Posterior Predictability [25.943330238941602]
We propose a visual model-based RL method that learns a latent representation resilient to spurious variations.
Our training objective encourages the representation to be maximally predictive of dynamics and reward.
Our effort is a step towards making model-based RL a practical and useful tool for dynamic, diverse domains.
arXiv Detail & Related papers (2023-08-31T18:43:04Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Alternate Model Growth and Pruning for Efficient Training of
Recommendation Systems [7.415129876303651]
Model pruning is an effective technique to reduce computation overhead for deep neural networks by removing redundant parameters.
Modern recommendation systems are still thirsty for model capacity due to the demand for handling big data.
We propose a dynamic training scheme, namely alternate model growth and pruning, to alternatively construct and prune weights in the course of training.
arXiv Detail & Related papers (2021-05-04T03:14:30Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
We propose a machine learning model, which dynamically changes the features during training.
Our main motivation is to update the model in a small content during the training process with replacing less descriptive features to new ones from a large pool.
arXiv Detail & Related papers (2020-02-21T12:38:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.