SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations
- URL: http://arxiv.org/abs/2403.19507v1
- Date: Thu, 28 Mar 2024 15:41:41 GMT
- Title: SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations
- Authors: Xuan Zhang, Jacob Helwig, Yuchao Lin, Yaochen Xie, Cong Fu, Stephan Wojtowytsch, Shuiwang Ji,
- Abstract summary: We propose SineNet, consisting of multiple sequentially connected U-shaped network blocks, referred to as waves.
In SineNet, high-resolution features are evolved progressively through multiple stages, thereby reducing the amount of misalignment within each stage.
Our method is rigorously tested on multiple PDE datasets, including the Navier-Stokes equations and shallow water equations.
- Score: 46.244771659503314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider using deep neural networks to solve time-dependent partial differential equations (PDEs), where multi-scale processing is crucial for modeling complex, time-evolving dynamics. While the U-Net architecture with skip connections is commonly used by prior studies to enable multi-scale processing, our analysis shows that the need for features to evolve across layers results in temporally misaligned features in skip connections, which limits the model's performance. To address this limitation, we propose SineNet, consisting of multiple sequentially connected U-shaped network blocks, referred to as waves. In SineNet, high-resolution features are evolved progressively through multiple stages, thereby reducing the amount of misalignment within each stage. We furthermore analyze the role of skip connections in enabling both parallel and sequential processing of multi-scale information. Our method is rigorously tested on multiple PDE datasets, including the Navier-Stokes equations and shallow water equations, showcasing the advantages of our proposed approach over conventional U-Nets with a comparable parameter budget. We further demonstrate that increasing the number of waves in SineNet while maintaining the same number of parameters leads to a monotonically improved performance. The results highlight the effectiveness of SineNet and the potential of our approach in advancing the state-of-the-art in neural PDE solver design. Our code is available as part of AIRS (https://github.com/divelab/AIRS).
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Towards Multi-spatiotemporal-scale Generalized PDE Modeling [4.924631198058705]
We make a comparison between various FNO and U-Net like approaches on fluid mechanics problems in both vorticity-stream and velocity function form.
We show promising results on generalization to different PDE parameters and time-scales with a single surrogate model.
arXiv Detail & Related papers (2022-09-30T17:40:05Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training [0.0]
We present a framework for solving problems governed by partial differential equations (PDEs) based on elastic networks.
We find that the approach converges to solve problems of porosci, Barry-Scier's injection-production problem, and a two-phase drainage problem.
arXiv Detail & Related papers (2021-10-06T20:09:09Z) - Exploiting Multiple Timescales in Hierarchical Echo State Networks [0.0]
Echo state networks (ESNs) are a powerful form of reservoir computing that only require training of linear output weights.
Here we explore the timescales in hierarchical ESNs, where the reservoir is partitioned into two smaller reservoirs linked with distinct properties.
arXiv Detail & Related papers (2021-01-11T22:33:17Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
We develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales.
The resulting model is purely data-driven and leverages features of the multiscale dynamics.
We benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN.
arXiv Detail & Related papers (2020-08-22T07:16:53Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.