Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training
- URL: http://arxiv.org/abs/2110.03049v1
- Date: Wed, 6 Oct 2021 20:09:09 GMT
- Title: Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training
- Authors: Ehsan Haghighat and Danial Amini and Ruben Juanes
- Abstract summary: We present a framework for solving problems governed by partial differential equations (PDEs) based on elastic networks.
We find that the approach converges to solve problems of porosci, Barry-Scier's injection-production problem, and a two-phase drainage problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have received significant attention
as a unified framework for forward, inverse, and surrogate modeling of problems
governed by partial differential equations (PDEs). Training PINNs for forward
problems, however, pose significant challenges, mainly because of the complex
non-convex and multi-objective loss function. In this work, we present a PINN
approach to solving the equations of coupled flow and deformation in porous
media for both single-phase and multiphase flow. To this end, we construct the
solution space using multi-layer neural networks. Due to the dynamics of the
problem, we find that incorporating multiple differential relations into the
loss function results in an unstable optimization problem, meaning that
sometimes it converges to the trivial null solution, other times it moves very
far from the expected solution. We report a dimensionless form of the coupled
governing equations that we find most favourable to the optimizer.
Additionally, we propose a sequential training approach based on the
stress-split algorithms of poromechanics. Notably, we find that sequential
training based on stress-split performs well for different problems, while the
classical strain-split algorithm shows an unstable behaviour similar to what is
reported in the context of finite element solvers. We use the approach to solve
benchmark problems of poroelasticity, including Mandel's consolidation problem,
Barry-Mercer's injection-production problem, and a reference two-phase drainage
problem. The Python-SciANN codes reproducing the results reported in this
manuscript will be made publicly available at
https://github.com/sciann/sciann-applications.
Related papers
- FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Exact Enforcement of Temporal Continuity in Sequential Physics-Informed
Neural Networks [0.0]
We introduce a method to enforce continuity between successive time segments via a solution ansatz.
The method is tested for a number of benchmark problems involving both linear and non-linear PDEs.
The numerical experiments conducted with the proposed method demonstrated superior convergence and accuracy over both traditional PINNs and the soft-constrained counterparts.
arXiv Detail & Related papers (2024-02-15T17:41:02Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Accelerated Solutions of Coupled Phase-Field Problems using Generative
Adversarial Networks [0.0]
We develop a new neural network based framework that uses encoder-decoder based conditional GeneLSTM layers to solve a system of Cahn-Hilliard microstructural equations.
We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.
arXiv Detail & Related papers (2022-11-22T08:32:22Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - DeepSplit: Scalable Verification of Deep Neural Networks via Operator
Splitting [70.62923754433461]
Analyzing the worst-case performance of deep neural networks against input perturbations amounts to solving a large-scale non- optimization problem.
We propose a novel method that can directly solve a convex relaxation of the problem to high accuracy, by splitting it into smaller subproblems that often have analytical solutions.
arXiv Detail & Related papers (2021-06-16T20:43:49Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.