Debiasing Cardiac Imaging with Controlled Latent Diffusion Models
- URL: http://arxiv.org/abs/2403.19508v1
- Date: Thu, 28 Mar 2024 15:41:43 GMT
- Title: Debiasing Cardiac Imaging with Controlled Latent Diffusion Models
- Authors: Grzegorz Skorupko, Richard Osuala, Zuzanna Szafranowska, Kaisar Kushibar, Nay Aung, Steffen E Petersen, Karim Lekadir, Polyxeni Gkontra,
- Abstract summary: We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
- Score: 1.802269171647208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The progress in deep learning solutions for disease diagnosis and prognosis based on cardiac magnetic resonance imaging is hindered by highly imbalanced and biased training data. To address this issue, we propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data based on sensitive attributes such as sex, age, body mass index, and health condition. We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry derived from segmentation masks using a large-cohort study, specifically, the UK Biobank. We assess our method by evaluating the realism of the generated images using established quantitative metrics. Furthermore, we conduct a downstream classification task aimed at debiasing a classifier by rectifying imbalances within underrepresented groups through synthetically generated samples. Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances, such as the scarcity of younger patients or individuals with normal BMI level suffering from heart failure. This work represents a major step towards the adoption of synthetic data for the development of fair and generalizable models for medical classification tasks. Notably, we conduct all our experiments using a single, consumer-level GPU to highlight the feasibility of our approach within resource-constrained environments. Our code is available at https://github.com/faildeny/debiasing-cardiac-mri.
Related papers
- Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks [3.3903891679981593]
We present Bias-transforming Generative Adversarial Networks (Bt-GAN), a GAN-based synthetic data generator specifically designed for the healthcare domain.
Our results demonstrate that Bt-GAN achieves SOTA accuracy while significantly improving fairness and minimizing bias.
arXiv Detail & Related papers (2024-04-21T12:16:38Z) - Iterative Online Image Synthesis via Diffusion Model for Imbalanced
Classification [29.730360798234294]
We introduce an Iterative Online Image Synthesis framework to address the class imbalance problem in medical image classification.
Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS)
To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets.
arXiv Detail & Related papers (2024-03-13T10:51:18Z) - MCRAGE: Synthetic Healthcare Data for Fairness [3.0089659534785853]
We propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE) to augment imbalanced datasets.
MCRAGE involves training a Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes.
We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes.
arXiv Detail & Related papers (2023-10-27T19:02:22Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Equitable modelling of brain imaging by counterfactual augmentation with
morphologically constrained 3D deep generative models [0.5695579108997391]
The model is intended to synthesise counterfactual training data augmentations for downstream discriminative modelling tasks.
We evaluate the quality of synthesized counterfactuals with voxel-based morphometry, classification and regression of the conditioning attributes, and the Fr'echet distance.
We achieve state-of-the-art improvements, both in overall fidelity and equity.
arXiv Detail & Related papers (2021-11-29T19:55:31Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.