Spectral Clustering for Directed Graphs via Likelihood Estimation on Stochastic Block Models
- URL: http://arxiv.org/abs/2403.19516v2
- Date: Tue, 03 Jun 2025 17:00:53 GMT
- Title: Spectral Clustering for Directed Graphs via Likelihood Estimation on Stochastic Block Models
- Authors: Ning Zhang, Xiaowen Dong, Mihai Cucuringu,
- Abstract summary: We leverage statistical inference on block models to guide the development of a spectral clustering algorithm for directed graphs.<n>We establish a theoretical upper bound on the misclustering error of its spectral relaxation, and based on this relaxation, introduce a novel, self-adaptive spectral clustering method for directed graphs.
- Score: 22.421702511126373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering is a fundamental task in unsupervised learning with broad real-world applications. While spectral clustering methods for undirected graphs are well-established and guided by a minimum cut optimization consensus, their extension to directed graphs remains relatively underexplored due to the additional complexity introduced by edge directions. In this paper, we leverage statistical inference on stochastic block models to guide the development of a spectral clustering algorithm for directed graphs. Specifically, we study the maximum likelihood estimation under a widely used directed stochastic block model, and derive a global objective function that aligns with the underlying community structure. We further establish a theoretical upper bound on the misclustering error of its spectral relaxation, and based on this relaxation, introduce a novel, self-adaptive spectral clustering method for directed graphs. Extensive experiments on synthetic and real-world datasets demonstrate significant performance gains over existing baselines.
Related papers
- Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.<n>Existing SHGL methods encounter two significant limitations.<n>We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - A Graph-Theoretic Framework for Understanding Open-World Semi-Supervised
Learning [33.05104609131764]
Open-world semi-supervised learning aims at inferring both known and novel classes in unlabeled data.
This paper formalizes a graph-theoretic framework tailored for the open-world setting.
Our graph-theoretic framework illuminates practical algorithms and provides guarantees.
arXiv Detail & Related papers (2023-11-06T21:15:09Z) - Distributed Linear Regression with Compositional Covariates [5.085889377571319]
We focus on the distributed sparse penalized linear log-contrast model in massive compositional data.
Two distributed optimization techniques are proposed for solving the two different constrained convex optimization problems.
In the decentralized topology, we introduce a distributed coordinate-wise descent algorithm for obtaining a communication-efficient regularized estimation.
arXiv Detail & Related papers (2023-10-21T11:09:37Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
Block model is a canonical random graph model for clustering and community detection on network-structured data.
No estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold.
We prove that with an arbitrary fraction of the labels feasible throughout the parameter domain.
arXiv Detail & Related papers (2022-05-24T00:03:25Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Generalized Spectral Clustering for Directed and Undirected Graphs [4.286327408435937]
We present a generalized spectral clustering framework that can address both directed and undirected graphs.
Our approach is based on the spectral relaxation of a new functional that we introduce as the generalized Dirichlet energy of a graph function.
We also propose a practical parametrization of the regularizing measure constructed from the iterated powers of the natural random walk on the graph.
arXiv Detail & Related papers (2022-03-07T09:18:42Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - A Modular Framework for Centrality and Clustering in Complex Networks [0.6423239719448168]
In this paper, we study two important such network analysis techniques, namely, centrality and clustering.
An information-flow based model is adopted for clustering, which itself builds upon an information theoretic measure for computing centrality.
Our clustering naturally inherits the flexibility to accommodate edge directionality, as well as different interpretations and interplay between edge weights and node degrees.
arXiv Detail & Related papers (2021-11-23T03:01:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points.
Parameters of the model are iteratively estimated through an Expectation-Maximization procedure.
arXiv Detail & Related papers (2021-06-16T18:00:02Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
We introduce in this work clustering models based on a total variation (TV) regularization procedure on the cluster membership matrix.
We provide a numerical evaluation of all proposed methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionisation imaging measurement.
arXiv Detail & Related papers (2021-04-25T23:40:41Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Exact Clustering in Tensor Block Model: Statistical Optimality and
Computational Limit [10.8145995157397]
High-order clustering aims to identify heterogeneous substructure in multiway dataset.
Non- computation and nature of the problem poses significant challenges in both statistics and statistics.
arXiv Detail & Related papers (2020-12-18T00:48:27Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Robust spectral clustering using LASSO regularization [0.0]
This paper presents a variant of spectral clustering, called 1-spectral clustering, performed on a new random model closely related to block model.
Its goal is to promote a sparse eigenbasis solution of a 1 minimization problem revealing the natural structure of the graph.
arXiv Detail & Related papers (2020-04-08T07:12:56Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.