GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond
- URL: http://arxiv.org/abs/2403.19632v1
- Date: Thu, 28 Mar 2024 17:47:31 GMT
- Title: GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond
- Authors: Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen, Yihao Zhi, Xiaoguang Han,
- Abstract summary: GauStudio is a novel framework for modeling 3D Gaussian Splatting (3DGS)
We propose a hybrid Gaussian representation with foreground and skyball background models.
We also propose a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning.
- Score: 12.981928890478175
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present GauStudio, a novel modular framework for modeling 3D Gaussian Splatting (3DGS) to provide standardized, plug-and-play components for users to easily customize and implement a 3DGS pipeline. Supported by our framework, we propose a hybrid Gaussian representation with foreground and skyball background models. Experiments demonstrate this representation reduces artifacts in unbounded outdoor scenes and improves novel view synthesis. Finally, we propose Gaussian Splatting Surface Reconstruction (GauS), a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning. Overall, our GauStudio framework, hybrid representation, and GauS approach enhance 3DGS modeling and rendering capabilities, enabling higher-quality novel view synthesis and surface reconstruction.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GS-Net: Generalizable Plug-and-Play 3D Gaussian Splatting Module [19.97023389064118]
We propose GS-Net, a plug-and-play 3DGS module that densifies Gaussian ellipsoids from sparse SfM point clouds.
Experiments demonstrate that applying GS-Net to 3DGS yields a PSNR improvement of 2.08 dB for conventional viewpoints and 1.86 dB for novel viewpoints.
arXiv Detail & Related papers (2024-09-17T16:03:19Z) - Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity [7.861993966048637]
We introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations.
Our experiments show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity.
arXiv Detail & Related papers (2024-07-13T00:45:37Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplat is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.
We propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views.
arXiv Detail & Related papers (2024-05-28T08:40:14Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3D Gaussian Splatting (3DGS) has emerged as an efficient approach for accurately representing scenes.
We propose a novel approach for bridging the gap between the noisy 3DGS representation and the smooth 3D mesh representation.
We render stereo-aligned pairs of images corresponding to the original training poses, feed the pairs into a stereo model to get a depth profile, and finally fuse all of the profiles together to get a single mesh.
arXiv Detail & Related papers (2024-04-02T10:13:18Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRt is a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses.
As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $ge$ 5 FPS and real-time rendering at $ge$ 100 FPS.
arXiv Detail & Related papers (2024-03-15T09:47:35Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
We propose a novel framework that integrates the volumetric strengths of 3DGS with the powerful implicit representation of StyleGAN.
We show that our method achieves state-of-the-art performance in reenactment, novel view synthesis, and animation.
arXiv Detail & Related papers (2024-02-01T18:14:42Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
We propose GS-IR, a novel inverse rendering approach based on 3D Gaussian Splatting (GS)
We extend GS, a top-performance representation for novel view synthesis, to estimate scene geometry, surface material, and environment illumination from multi-view images captured under unknown lighting conditions.
The flexible and expressive GS representation allows us to achieve fast and compact geometry reconstruction, photorealistic novel view synthesis, and effective physically-based rendering.
arXiv Detail & Related papers (2023-11-26T02:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.